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1. Introduction 

Since 1991, the Research and Development (R&D) group at Lockheed Martin 

Canada (LM Canada) has been developing and demonstrating Level 1, 2, 3 and 4 data 

fusion, resource management and imaging technologies which will provide Observe-

Orient-Decide-Act (OODA) decision making capabilities/tools in Naval and Airborne 

Command and Control (C2) for application on Canadian Patrol Frigates (CPF) and 

Canada’s CP-140 (Aurora) fixed wing aircraft. Over the last three years LM Canada, 

in collaboration with Canada’s Defence Research Establishment Valcartier (DREV), 

has also established a generic expert system infrastructure and has demonstrated that 

it is suitable for integrating these decision making technologies into real-time 

Command and Control System (CCS). The Multi-Source Data Fusion (MSDF) 

technology is the most mature among these decision making technologies and is  

likely to be integrated onboard a currently fielded CCS the soonest. Over the last two 

years the LM Canada R&D team has started the effort towards re-structuring and 

optimizing the proof-of-concept MSDF algorithms to establish a prototype which will 

be ready for integration on the existing platforms, specifically the CPF, and that can 

perform real-time tracking and identification by the end of the year 2000. This 

restructuring and optimization is occurring in phases.  

First the existing proof-of-concept MSDF system was broken down into very basic 

modular and independent components within the generic expert system infrastructure. 

Each MSDF process (alignment, association, kinematic estimation, identification, 

etc.) consists of one or more of these basic components. This architecture is designed 

to enable independent modification and evaluation of each component. It is also ideal 

for ensuring future growth for adding additional decision support capabilities, with 

minimal impact on the already implemented and demonstrated system. 
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Next these components are analyzed, optimized and evaluated in terms of their 

performance, given the characteristics and amount of input sensor data and 

information. Initially, this is done using simulated data, and the optimization is 

iterated until the performance of the overall MSDF system is able to process peak 

loads of data with higher operational performance than the current CPF. 

In the third phase, recorded data at sea will be used to validate and further optimize 

the MSDF system. It is clear that the behaviour of some of the algorithms will be 

different with this data, and this will be the most challenging aspect of this phase. At 

the end of this phase the MSDF system will be ready for integration on CPF.  It will 

not only be able to process all data available on CPF, producing high quality 

kinematic and identification estimates, but will also be open for future evolution to 

more sophisticated sensor data processing, fusion of additional sources of data, higher 

level fusion processing, etc. 

At the current time, the first two phases of this effort are close to completion.  This 

paper includes the details, lessons learned and results of the first two phases, and 

describes the specific research activities envisaged in the third phase.  It also 

describes some earlier and parallel proof-of-concept efforts towards demonstrating 

the future growth of this system. 

2. KBS Architecture Based MSDF Design 

The details of the MSDF prototype,
1,2

  as well as the KBS architecture, have been 

published earlier.
3,4,5,6

 

The KBS architecture developed at LM Canada was designed right from the start as 

an architecture that could support a large real-time application through all phases of 

its development life-cycle, from early analysis and prototyping phases to the final 

deployment. As such, it had to incorporate several key features to give maximum 

flexibility to the developers without adversely impacting performance. As a 

minimum, the KBS shell must provide the following: 

a. Speed: The key advantage of this system is pure execution speed, as a result 

of its implementation as a compiled system (C++) rather than an interpreted 

one, and because of its optimized blackboard controller.  

b. Small Overhead: Because of its streamlined design, the KBS scheduling and 

activation mechanisms introduce very little overhead in the system. The 

difference between “Total Agent CPU” and the “user CPU” has been shown 

to be less than 5 %. 
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c. Linearity: The blackboard controller design incorporates a critical 

mechanism, similar to the so-called RETE algorithm, which directly links 

each agent to its associated data types, thereby avoiding costly loops each 

time an agent-data pair needs to be activated. This mechanism, coupled with 

a design which avoids lists searches in the internal controller, ensures from a 

theoretical point of view that the processing time of a given system of agents 

will scale linearly with the number of rules and data instances present in the 

system, thereby allowing system scaleability (provided of course that the 

agents themselves are linear). This linearity has been demonstrated with run-

time benchmarking of Level 2, 3 data fusion algorithms in a previous study
6
 

(similar to MSDF in terms of software complexity and CPU needs) with up 

to 1000 tracks.  

These features illustrate that the KBS-based implementation will not handicap the 

run-time performance of the MSDF system.  

Other major benefits of this architecture include modularity and the possibility of 

modifying each component independently, without affecting the rest of the system, as 

well as the ability for integrating algorithmic and rule-based decision support within 

the same infrastructure 

Although Level 1 data fusion does not require rule-based reasoning, it is clear that the 

architecture is ideal for future growth into higher level fusion implementations. 

Therefore the first step towards optimization of the MSDF prototype was to 

decompose it into agents. Figure 1 shows a high level diagram of how MSDF was 

decomposed into agents within the KBS architecture. It illustrates the fact that the 

MSDF system can be viewed as a small number of independent domains, consisting 

of a number of sequential steps: 

a. Data reception, preparation and buffering 

b. Data processing (i.e., the fusion processes) 

c. Track management 

d. Data output mechanism (not represented in Figure 1). 

The end result of this first step was a new prototype, Data Fusion on Blackboard 

(DFBB). 
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The designer can use three potential options to make optimal use of the processor 

(and other system’s resources) to obtain a faster execution, and ultimately guarantee 

real-time performance of the system within this infrastructure. 

 The first is intrinsic to the KBS and involves the regular blackboard scheduler 

together with the fine granularity of each individual agent; the second deals with 

agents multithreading, which is very robust and user-friendly on the KBS; and the 

third uses the real-time features of the operating system, which are still available to 

the developer through the KBS layer. Because of the nature of Data Fusion 

algorithms, and also because the timing constraints are not too stringent, our efforts 

will focus on the first method, namely run-time optimization of individual agents. 
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Figure 1: High-Level Data Flow Diagram of Agents Present in the MSDF System. 

Circles represent data types present on the KBS, while squares represent the 

agents that act on the data. Symbols XXX are used when agents/data types 

are present under several flavors depending on the context of operation (e.g. 

sensor name, track and contact types, etc.) 
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3. Initial Optimization Efforts 

The first necessary condition that has to be met by any real-time application is run-

time efficiency, that is, it has to ensure at least average real-time performance. This 

step involves the optimization of the DFBB to support real-time processing of all data 

available on a platform, specifically the CPF.  

The four domains of MSDF are more or less independent and could in principle be 

suitable for process prioritization schemes and real-time scheduling. However, initial 

review of the DFBB code shows that three domains out of four are low consumers of 

CPU resources, and the remaining one (Data Processing) consists of a relatively small 

number of sequential steps which would benefit very little from a sophisticated 

scheduling mechanism. Moreover, CPF real-time constraints on input data (typically 

several tenths of a second) do not justify the use of hard real-time features (or even a 

strict real-time operating system). For these reasons, before real-time scheduling and 

prioritization issues are even considered, code optimization must be pushed to the 

limit to increase run-time performance as much as possible. 

The code optimization is done by iteratively profiling the software, evaluating the 

bottlenecks and re-designing/re-coding to remove/reduce CPU utilization by such 

components, taking advantage of the various intrinsic facilities of the KBS 

architecture and other methods. 

3.1. DFBB Benchmarking 

The initial DFBB system processed a 100 seconds scenario in about 100 seconds (i.e., 

average real-time) for 100 targets, while the 200-targets scenario requires about 3.5 

times the amount of CPU to process a scenario of the same duration. 

This is not surprising, since a few agents are clearly expected to behave in a non-

linear way. In fact, all the agents participating in updating tracks, the application of 

the Kalman filter and the identity update are expected to show a linear behaviour (i.e., 

linear against the number of tracks), while those performing the gating are expected 

to behave roughly as "Ntr2", since the gating process involves "Ntr" x "Nir" pairs 

(where "Nir" is the average number of input reports in a data set which is  

proportional to "Ntr"). 

Those expectations are confirmed by a closer inspection at code profiling results for 

the individual agents. Several tools are available for this task, depending on the level 

of investigation taking place. Standard profiling tools are available on Unix, such as 

gprof, giving various degrees of details about the internal calls performed in each 

agent, with various timing accuracies as well. For the time being, a minimally 

intrusive way of probing the cumulative CPU used by each agent is of interest. For 
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this investigation, a timing tool is available on the KBS to monitor the user process 

time spent between the start and the end of each agent with minimal overhead, using 

C “Times” functions. The nominal precision on each agent execution (time / call) is 1 

millisecond.  

Results are presented in Table 1 for most agents involved in the fusion process in 

DFBB. 

 

Table 1.  DFBB Benchmark Results on a 450MHz Pentium Processor running 

under Solaris 2.6. A very large fraction of the CPU is used by only 6 agents 

(highlighted). 

Scenario : 50 Targets 100 Targets 

 

200 Targets 

 

Agent Name : num. of 

calls 

Total 

Time 

(secs) 

num. 

of 

calls 

Total 

Time 

(secs) 

num. 

of 

calls 

Total 

Time 

(secs) 

AddContact         14171  0.070 26808  0.230 51214  0.260 

AlignIFFContact   4389  0.170  8454  0.480 16307  0.900 

AlignSG150Contact   4663  0.240  8760  0.600 16629  0.980 

AlignSPS49Contact   5119  0.210  9594  0.550 18278  0.990 

AttributeGating      7120  0.760  8831  2.190  9358  7.760 

CreatePairs          7142  1.510  8854  3.620  9370  10.310 

CreateRBTrack          59  0.010    117  0.010    248  0.010 

DeleteContact        14171  0.100  26808  0.300  51214  0.700 

DeletePair           55984  0.660  153937  1.640  550216  6.640 

ExtAdap KalmanRB_RB    14112  2.170  26691  4.050  50966  7.490 

FuseProposition        2534  0.110   4870  0.180   9472  0.410 

GateRB_RB            41813  3.700  127129  11.690  499002  46.870 

GenerateTrack        14171  0.230  26808  0.490  51214  0.770 

IdentityUpdate        14112  0.320  26691  0.600  50966  1.370 

NearestNeighbour       7120  0.520   8831  0.720   9358  1.270 

Principal                 1  0.130      1  0.140      1  0.140 

SocketContact          7143  0.580   8855  0.930   9371  1.620 

TimeUpdateRBTrack     55925  5.290  153820  14.630  549968  54.720 

TrackGenID           1615 0.620   2516  0.910   3174  1.310 

CPU agent total time  17.42  43.98  144.52 

User CPU time (sec):  

System CPU time (sec): 

Execution Time (min):  

Overall CPU use (%): 

 18.67  

1.27 

0:20.40 

97.7 % 

 46.07  

2.89 

0:49.36 

99.1 % 

 152.46 

6.00 

2:38.85 

99.7 % 
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The following observations follow directly from the data displayed in Table 1: 

a. A very large fraction of the CPU time (above 90% for 200 tracks) is spent in six 

agents. These agents are all on the critical path and cannot be pushed aside or 

executed out of sequence by some process scheduling scheme. In order to reduce 

average run-time comfortably below the 100-second duration of the scenario, the 

first step is clearly to optimize those agents to increase execution speed and, if 

possible, linearize them with respect to the number of tracks “Ntr” to reduce their 

impact on the worst-case scenario and improve scaleability (for Ntr > 200). 

b. The most time-consuming agents, as identified in Table 1, are all (except one) 

agents that show a non-linear execution time against the number of tracks 

processed by the system. The non-linear agents are: TimeUpdateRBTrack, 

GateRB_RB, CreatePairs, DeletePair, AttributeGating; Among those, we can 

identify two categories: 

1) The number of calls to the agent is roughly constant, but the agent internal 

algorithms involve input data of the type "Ntr" x "Nir" (e.g., track-input 

report pairs), and requires a processing time roughly proportional to “Ntr2 ”. 

The agents falling in this category are “AttributeGating” and “CreatePairs”. 

2) The agent execution time is roughly constant, but the number of calls to the 

agent increases like “Ntr2”. This category includes DeletePair, GateRB_RB 

and TimeUpdateRBTrack. 

From the preliminary analysis and observations above, taking each agent 

independently, the following optimization strategy to reach average real-time 

performance was selected: 

a. TimeUpdateRBTrack: This agent is the most demanding in the whole system, 

thanks to both internal processing needs and a large number of calls. It is used 

both for the gating process and the positional track update process (as part of  

the Kalman filter process); these processes can be analyzed separately: 

1) Track update: At the end of the fusion process, each contact is used to 

update the state vector of one of the tracks in the system. The track is 

time-updated in the process, resulting in ~50 000 calls to 

TimeUpdateRBTrack for the 200 seconds scenario. The number of 

calls is linear with Ntr and does not cause abusive overhead in this 

process. 

2) Position update: before the gating process, the MSDF algorithm selects 

a sample of tracks, and propagates their state vector to the time of each 

contact received to form a contact-track pair. This translates into a 
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number of calls of order “Ntr
2
”, for a total of ~480 000 agent calls to 

TimeUpdateRBTrack during the 200 second scenario. This latter 

number could be reduced by a factor of ~6 if the tracks were time 

updated to an average time instead of the individual times of the input 

reports, thereby making the number of calls to the agent linear with 

“Ntr” 

3) Once this agent has been linearized, another quantum leap in speed will 

be gained by the use of XY coordinates for tracking, instead of the 

current RB coordinates. The current agent TimeUpdateRBTrack 

spends significant processing time converting the RB track state to an 

intermediate XY state vector, and back to RB.  

b. GateXY_XY  will replace the current RB_RB version. This by itself will do 

little to improve run-time performance since the gating agents do not require 

RB to XY conversions. However, in the current implementation, all gating 

agents compute their statistical distance via a call to a single, generic method 

that performs several complex matrix operations (i.e., matrix reduction, 

transposition, multiplication and inversion). This improves code readability 

but only at the expense of significant CPU overhead. It is hard to predict the 

cumulative gain expected by all these optimizations; a factor of 2 is certainly 

an underestimation and a factor or 5 is not out of reach. 

c. ExtAdapKalmanRB_RB  is a linear agent, but suffers both from time-

consuming RB to XY conversions and from extensive use of matrix 

operations used to calculate the Kalman gain and the resulting track state 

update. This agent is already linear in “Ntr” and should drop by a (very 

conservative) factor of 2 at least in the final implementation.  

d. A significant speed increase can be achieved just by implementing a better 

object creation strategy in the MSDF system. Most of the dynamic memory 

allocation can be replaced by the use of persistent objects created upon 

system initialization, for instance by replacing contact-track pair objects by a 

single, persistent pair list. An immediate effect would be the disappearance 

of the agents DeletePair and DeleteContact, two of the major - non-linear - 

CPU contributors identified above. This would result in an immediate gain 

of about 40 seconds out of 320, for the 200-targets scenario. Similar object 

creation is also hidden inside other agents (e.g., ExtAdapKalmanRB_RB, 

which instantiates a new TrackState object for each track update) and can be 

improved, with significant gains in terms of run-time performance. 

The sole implementation of about half of the strategies stated above decreased 

significantly the CPU time needed by those processes, prior to performing any deeper 
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investigation to streamline and optimize the individual agents (e.g. through internal 

code profiling). After a change of coordinate system, and with most generic matrix 

operations expanded, one gets the figures presented in Table 2, where the results of 

benchmarking before and after optimization are shown side-by-side for 200-targets 

scenario.  

Even though object creation/deletion strategies and agents linearization still remain to 

be applied, overall CPU needs of DFBB agents has already been divided by three, 

allowing the system to achieve average real-time performance on the presented 

scenario. Further optimization is expected to bring the current figure down by another 

factor of two.  

4. Supporting R&D and Future Plans 

In parallel with this real-time performance optimization efforts, there are a number of 

projects at LM Canada which look at the optimization of algorithm performance, 

development of alternate algorithms which have higher performance, development of 

Table 2. Comparison of DFBB before and after the first round of optimisation for 

a 100-seconds, 200-targets scenario on a 450MHz Pentium Processor, 

showing the main CPU-demanding agents.  

Scenario : Before 

Optimisation 

(R-B Tracking) 

After 

Optimisation 

(X-Y Tracking) 

 

Agent Name : 

num. of 

calls 

Total 

Time 

(secs) 

num. of 

calls 

Total 

Time 

(secs) 

ExtAdapKalman 50743 8.100 50764 7.510 

TimeUpdate Track    891431 102.140 895377 17.000 

Gate         840688 101.040 844613 12.400 

CreatePairs         9326 22.350 9326 21.950 

DeletePair          891681 10.110 895606 9.940 

AttributeGating     9315 12.770 9315 2.510 

total main 6 agents  256.51  71.31 

% of total agent CPU  95 %  85 % 

     

total all other agents  15.04  14.01 

Total Agents CPU  271.55  85.32 
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strategies for fusion management (level 4 fusion) to activate different algorithms 

depending to different context, etc. 

The KBS architecture is ideally suited for supporting all of these concurrent 

activities, permitting iterations of algorithmic and real-time optimization indefinitely, 

until the desired performance is achieved of each individual platform. 

The next step for the CPF is to use recorded data at sea and use it to validate and 

further optimize the MSDF system.  It is clear that the behaviour of some of the 

algorithms will be different with this data, and this will be the most challenging  

aspect of this phase. In this phase too, the algorithmic developments of the parallel 

research efforts will be very useful, as a variety of algorithms to perform each MSDF 

task will be available for experimentation. At the end of this phase the MSDF system 

will be ready for integration on CPF. 
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