
INFORMATION & SECURITY. An International Journal, Vol. 8, No. 2, 2002, 209-238.

 I&S

MAPWEB: COOPERATION BETWEEN PLANNING

AGENTS AND WEB AGENTS

David CAMACHO, José MOLINA, Daniel BORRAJO
and Ricardo ALER

1. Introduction

Nowadays, there is a vast (and growing) amount of information stored in the WEB

available for any user connected to the network. This information is heterogeneous

and distributed. Web information could be used by the users to solve many different

problems if only they could spend enough time searching, retrieving, and analyzing

the data. Internet provides a lot of WEB applications like search engines and meta-

search engines that enable the users to look for the information they need. However,

currently it is impractical to build a single and unified system that combines all

possible information sources that could be useful to the users. Some of the reasons

are summarized below:

 The number of information sources in the web grows exponentially.

 There are a lot of WEB information sources that provide similar information,

each one using its own representation of the information. For instance, a

traveler might want to find suitable plane companies to get to his/her

destination. However, different companies will display on the web similar

data but using different representations.

 Different information sources usually provide different kinds of information

and it is not always easy to combine them to achieve common goals. For

instance, in Non-combatant Evacuation Operations (NEO) domains, it would

be useful to combine the information coming from weather forecast sites

with the information obtained from Geographical Information System (GIS)

servers.

 The information stored could change dynamically over time. A short-term

weather forecast site is a good example.

210 MAPWEB: Cooperation between Planning Agents and Web Agents

Due to the previously elaborated problems, current WEB search engines basically rely

only on purely syntactical textual information retrieval. There are only a few

approaches that try to integrate a set of different and specialized sources, but

unfortunately it is very difficult to develop and to maintain this kind of systems.
1

Therefore, users cannot use heterogeneous information to obtain satisfactory results

in problem solving in a short time and with high quality. It is true that there are many

systems that extract, filter and represent efficiently the information obtained from the

WEB. However, most of these systems are focused mainly on the amount of

information retrieved.
2

Integrating heterogeneous information is one of the main goals of MAPWEB.

However, having complete and high-quality information is not necessarily an end in

itself. If the user wants to solve complex problems using that information, the system

must include intelligent elements able to reason in complex domains. For instance, a

traveler needs to be provided with good plans that combine different means of

transportation in an efficient manner. Similarly, NEO and military operations need

intelligent systems to move units and supplies on the terrain in a coordinated and

efficient way. Artificial Intelligence (AI) provides software components that fill in

that gap: planning systems that find good quality plans in complex domains, machine

learning systems that learn from experience in these domains, etc. In our work, we

apply such AI techniques but in a Multi-Agent System (MAS) framework (a part of

what is called Distributed Artificial Intelligence (DAI)). These systems are built using

a set of modular components, or agents, that are specialized in solving a particular

aspect of a problem.
3
 This decomposition allows each agent to use the most

appropriate paradigm for solving its particular problem.
4
 Every MAS uses the agent

concept, which is extensively described in several publications.
5
 The main

characteristics of a MAS can be summarized as follows:

 Each agent has an incomplete amount of information or does not have the

required abilities to solve the entire problem.

 There is no centralized control.

 Data is not centralized; therefore agents must share their data.

 System execution is asynchronous; an agent can be working and receiving

queries simultaneously.

 Each agent has an internal state. It is also able to reason about the

environment and possibly learn from experience in order to improve its

behavior.

In our work, the agent-based framework provides certain benefits, namely:

 First, multi-agent systems are societies of (usually) heterogeneous software

components, using, however, in their communication a common language.

 David Camacho, José M.Molina, Daniel Borrajo, Ricardo Aler 211

Therefore, MAS address directly the problem of integrating heterogeneous

systems, each one handling different kinds of information. This is the

problem that complex web information retrieval systems have to face, as has

been mentioned before.

 MAS are often used to solve AI problems, such as planning, scheduling,

learning, and they have shown their value, due to the fact that:

 Different agents can combine their abilities in a synergetic manner. This

has been clearly shown in the so called multi-strategy learning systems

where different systems provide different characteristics useful to

achieve a common goal.
6
 However, this is not the only example. For

instance, it has been shown that different planners work well in different

domains.
7
 Therefore, in some cases it would be a good idea to combine

different planner agents in the same MAS system.
8

 They offer modularity, flexibility, and adaptability. A MAS uses a

common language and, thus, provides a means for communication

between heterogeneous agents. Hence, it is easy to add new agents with

new abilities, if required. These characteristics are essential in complex,

large or unpredictable domains.
9

 MAS are inherently parallel, in this way facilitating the efficient

execution of the computationally complex problems associated with AI.

However, integrating and coordinating different agents is a complex problem in itself

that has to be addressed.
10, 11

 When interdependent problems arise, the agents in the

system have to cooperate in order to ensure that the interdependencies are properly

handled.

This paper presents a distributed multi-agent architecture – MAPWEB – that accepts

queries from the users. These queries are actually the problems that have to be

solved. As a result the system produces possible solution schemata by means of AI

problem-solving techniques (planning and learning), which are then validated and

completed using the information available on the WEB.

This paper is divided into seven sections: Section 2 presents a review of the related

work in Multi-agent systems; Section 3 describes the MAPWEB architecture;

Section 4 analyzes how the system interacts with the user and finds solutions;

Section 5 presents an example application domain of the designed system; Section 6

summarizes the conclusions; and finally, Section 7 shows the future lines of work.

2. Related Work

There are several approaches that attempt to work with the information stored on the

Web. These approaches focus mainly on the process of retrieval of (usually textual)

212 MAPWEB: Cooperation between Planning Agents and Web Agents

information, but only few of them try to reason with that information. This section

analyzes these systems and illustrates how they handle the stored data. We will focus

on the agent-based systems (like Web and Intelligent agents) and the multi-agent-

based systems that have been developed and deployed recently.

WEB and Internet applications can be classified in different ways. The following

classification focuses mainly on how these systems use the available data:

1. Simple Web-Applications: Systems that search, retrieve and store

information, like searchers, meta-searchers or any other popular information

retrieval applications. The main goals of these systems are the search and

retrieval of WEB information.

2. Complex Web-Applications: Systems that transform the obtained

information, share with other systems its knowledge, and even could

cooperate with other systems to obtain solutions that may be useful to the

users. These kinds of systems have a wide range of characteristics that

attempt to achieve more complex tasks than just retrieving information.

Figure 1 displays a possible classification of the most common WEB applications.

Solid lines show that the majority of a given kind of system belongs to the designated

class and discontinuous lines show that some applications could be built using only a

subset of the characteristics so that intelligence and/or robustness of the systems is

increased.

Figure 1: Generic classification of WEB systems.

2.1. Intelligent Agents

Intelligent Agents are software entities that assist people and act on their behalf. They

make the user’s life easier, save his/her time, and provide a simplified view of a

complex world. Any Intelligent Agent tries to assist, advise or learn from past

experience or from other agents’ experience to anticipate the requirements of the

user. In fact, the agent-based technology is a combination of various technologies

 David Camacho, José M.Molina, Daniel Borrajo, Ricardo Aler 213

including, but not limited to, neural networks, expert systems, fuzzy logic, machine

learning, planning.
12

It is a difficult task to characterize accurately what is an agent. There is extensive

literature on the topic.
13,14

 The following features can be used to characterize an

intelligent agent:

 Agents are pro-active in nature (although they can and will be reactive as

well).
15

 Agents can learn as a result of their action – not to mention from their

mistakes.
16,17

 Agents can be predictive in nature.
18 19

 Other key attributes of the paradigm include autonomy, security, personality,

and mobility.
20, 21

 However, an agent need not possess all these

characteristics. The fact that an agent can move from one environment to

another is not a requirement in all cases.

 Lastly, agents are social in nature. They can collaborate with other agents as

well as delegate tasks to subordinate or “better suited for the job” agents.
22

Different and successful intelligent agents have been developed recently. In the

following, some of these agents will be briefly described:

 Softbot. This agent interacts with a software environment by using and

interpreting the environment feedback. The softbot effectors are UNIX

commands that enable the agent to change the state of the user

environment.
23

 SodaBot is a general-purpose software agent user environment and

construction system. Its main component is the basic software agent that is a

computational framework for building agents; it is essentially an agent

operating system. Through the definition of a new programming language it

is possible for the users to implement a wide-range of typical software agent

applications, such as on-line assistants or meeting-scheduling agents.
24

 SIMS and ARIADNE. These intelligent information agents are focused

mainly on information retrieval and integration of different kind of

information sources. SIMS focuses on the integration of well-structured

databases,
25

 while the ARIADNE project deals with accessing information

from more loosely structured Web sources.
26

2.2. WebAgents

Currently there is an enormous number of Web applications that offer different

services to Internet users, such as search and meta-search engines (Lycos, Altavista,

214 MAPWEB: Cooperation between Planning Agents and Web Agents

Yahoo), e-commerce markets, auctions, web directories, etc.
27

 As we have said in

Section 1, due to the current evolution of the WEB (and other on-line information

sources), it has become a necessity to provide some sort of intelligent assistance to

the users. WebAgents are applications that are able to consult the best Internet sites

and perform agent specific tasks, such as retrieving, processing, tracking and

submitting required information. WebAgents perform specific Internet tasks. From

this point of view, the functionality of WebAgents is given by the agents installed on

the system and their specific purpose. There is a lot of research and development on

this kind of systems. Here we only briefly mention some of the developments:

 MetaCrawler. The METACRAWLER SOFTBOT is a parallel WEB search

service that provides unified interface by which any user can query popular

general-purpose WEB search engines, such as Lycos or Altavista.

METACRAWLER has some characteristics that enables it to obtain results of

higher quality than simply showing the output from the search service.
28

 Letizia is a user interface agent that assists users browsing the World

Wide Web. While the user operates a conventional Web browser, the agent

tracks user behavior and attempts to anticipate items of interest by doing

concurrent, autonomous exploration of links from the user’s current position.

The agent automates a browsing strategy consisting of best-first search

augmented by heuristics derived from inferring user interest from its

browsing behavior.
29

 WebWatcher is a “tour guide” agent for the World Wide Web. Once a user

enters to WebWatcher what kind of information he/she looks for, it

accompanies the user from page to page. While the user browses the web, it

highlights hyper-links that it believes could be of interest. Its strategy to give

advice is learned from the feedback from earlier tours. Currently,

WebWatcher is online only on an irregular basis.
30

 WebPlan. This intelligent WEB agent has been developed at Kaiserslautern

Universtity. WEBPLAN is a search assistant for domain-specific search on the

Internet based on dynamic planning and plan execution techniques.
31

2.3. Multi-Agent Systems

Due to the growing importance of agent-based technologies in the development of

software systems, there are several commercial and research agent development

toolkits. It is very difficult to select an appropriate toolkit, as each toolkit has been

designed for a certain architecture or paradigm. We will only examine several

popular toolkits and deployed MAS.

 AgentBuilder. This is a very popular commercial toolkit for building

and testing agent-based software. Agents constructed using AgentBuilder

 David Camacho, José M.Molina, Daniel Borrajo, Ricardo Aler 215

communicate using KQML (Knowledge Query and Manipulation

Language).
32

 It makes it possible to develop and extend the standard KQML

performatives (or messages) to include additional performatives.
33

 JAFMAS. This toolkit provides a framework that helps developers to

structure their ideas into specific agent applications. It directs the

development from a speech-act perspective and supports multicast and

directed communication, KQML or other speech-act performatives. It also

performs some analysis on the multi-agent system coherency and

consistency.
34

 JADE (Java Agent Development Framework) is a software development

framework aimed at developing multi-agent systems and applications,

conforming to FIPA standard for intelligent agents.
35

 JADE can be considered

as an agent middle-ware that implements an Agent Platform and a

development framework.
36

 JATLite is a framework for creating multi-agent systems. JATLite

includes a message router (agent message router or simply AMR agent) that

supports message buffering, allowing agents to fail and recover. Agents can

send and receive messages using KQML. Message buffering also supports a

name-and-password mechanism that enables agents to move freely between

hosts.
37

 KASBAH is a virtual market place on the WEB where users can create

autonomous agents that buy and sell goods on their behalf. Users can specify

parameters to guide and constrain the agent’s overall behavior. Any

intelligent agent in KASBAH is an object (an instance of a class) and the

market place allows the user to create buying and selling agents, which then

interact in the market with other agents. The agents themselves are not very

smart, although they are completely autonomous. Agents do not use AI or

Machine Learning techniques. The interesting aspect of KASBAH is its multi-

agency. It is a good framework for testing different important characteristics

of this kind of systems, such as negotiation.
38

 MPA. The Multiagent Planning Architecture is a framework for integrating

diverse technologies into a system capable of solving complex planning

problems. MPA has been designed for application to planning problems that

cannot be solved by individual systems, but rather require the coordinated

effort of a diverse set of technologies and human experts.
39

 CMUEXPRESS is a MAS architecture developed at Carnegie Mellon

University (CMU). Its purpose is to plan, execute plans, and monitor its

performance. It has been applied to Non-combatant Evacuation Operations

(NEO). In this specific case, the entire system integrates about twenty agents.

216 MAPWEB: Cooperation between Planning Agents and Web Agents

In particular, it includes MMM (a user interface developed at Stanford

Research Institute- SRI), ARIADNE (described above), and the already

mentioned CMUEXPRESS. The goal is to locate, pick up, and carry civilians to

a safe place. The agents collaborate in the following manner. First, ARIADNE

locates the civilians. Then, CMUEXPRESS provides routing plans to transport

them, in addition to monitoring the on-going plan and reacting to events.

CMUEXPRESS can use the tracking information provided by ARIADNE, that is

obtained from an on-line web-site.
40

 Finally, there is a hierarchical multi-agent system developed at DERA (UK)

to plan military activities (i.e., moving troops on a terrain) and execute them.

Its aim is to combine deliberative and reactive behavior. The agents in the

society are organized in a hierarchical military manner. For instance, there is

a Squadron Commander agent, a Troop Commander agent, a Tank agent,

etc. This framework enables the more reactive behaviors of the agents at

lower levels of the hierarchy to be guided by the more deliberative planning

of the agents above them in the hierarchy. In particular, a constraint planner

(deliberative) and an anytime planner (reactive) are combined within the

hierarchy.
41

3. MAPWEB: A Multi-Agent Architecture for Reasoning on the Web

As already mentioned, the main advantage of using MAS techniques is the flexibility

and adaptability of the resulting system. A MAS could consist of several

heterogeneous elements. These elements, or agents, can play different programmed

roles, could execute different functions, and could modify their behavior dynamically.

MAPWEB is a MAS approach that integrates heterogeneous agents. These agents

assemble a set of “logic-layers” between the users and the WEB. The architecture

hides the WEB from the users. This facilitates the user in coping with the overload of

information. Figure 2 illustrates the four-layered architecture of MAPWEB.

1. Physical World: it represents the users.

2. Reasoning Layer: this layer connects any physical agent (usually human)

with a set of systems that allows the agents to access the desired information.

3. Accessing Information Layer: this layer retrieves the information from

distributed sources (like the WEB) and represents it in an understandable

fashion to the previous layer.

4. Information World: it represents all the information available on networks,

computers, or any other kind of electronic support. This “world” is

accessible only through information retrieval systems.

 David Camacho, José M.Molina, Daniel Borrajo, Ricardo Aler 217

Figure 2: World/Web Layers.

How MAPWEB implements the above described multi-layer architecture, can be seen

in Figure 3. The system is composed of a set of agents that can communicate, share

knowledge and cooperate in order to find solutions to the problems posed by users.

Figure 3: MAPWeb general Architecture.

This architecture has been designed to deal with some frequent problems existing on

the WEB. In order to accomplish this, it is necessary to use an internal knowledge

representation shared by the agents, and different reasoning techniques that enable the

agents to look for new solutions. MAPWEB is a MAS approach that integrates

different heterogeneous agents with diverse roles into the agent society. The types of

agents used can be summarized into the following categories:

 UserAgent: this agent connects the physical world with the reasoning layer.

218 MAPWEB: Cooperation between Planning Agents and Web Agents

It takes user queries and displays to the user the solution(s) found by the

system. UserAgents capture problem queries from the users and send them

further to a reasoner-agent. PlannerAgent is the only currently developed

reasoner-agent, but various kinds of reasoner-agents, such as

LearningAgents, will be developed in the future. Afterwards, the reasoner-

agents are responsible for finding solutions to the problem.

 ControlAgents: These agents belong to the reasoning layer and considering

the organizational structure of the system, there are two different types of

control-agents in MAPWEB: ManagerAgent and CoachAgents. Their main

roles are summarized below:

 ManagerAgent: It directs the insertion and deletion of agents from the

system. This agent is responsible for building dynamic teams of agents

specialized in different problem solving activities.

 CoachAgent: This agent controls a set of heterogeneous agents that

represent a team, which accepts problems from any agent (software or

human) in the system and attempts to solve them.

Figure 4 illustrates the relationship between these kinds of agents and the

rest of the agents in MAPWEB. Agents are organized in teams, each one is

managed by a coach. The whole system is leaded by a manager. Each

UserAgent, PlannerAgent or WebAgent might belong to several teams if

necessary for the proper work of the team.

Figure 4: Manager and Coach Agents Organization.

 David Camacho, José M.Molina, Daniel Borrajo, Ricardo Aler 219

 PlannerAgent: This agent (belonging to the reasoning layer) receives a

planning problem, builds an abstract representation of it, and solves it.

PlannerAgents have different abilities, such as communication and planning.

 WebAgent: These agents belong to the accessing information layer and

connect the reasoning layer with the information world. Its main goal is to

complete the details of the abstract plans obtained by the PlannerAgents. It

receives that information from the WEB.

Some of the underlying modules (see Figure 5) of any MAPWEB-agent are:
42

1. Control module: it manages all possible tasks performed by the agents. This

module is basically made of an agenda, some policies, and a set of

specialized skills.

2. Knowledge module: this module is used by the different agents to store their

own knowledge.

3. Skills module: this module implements the specialized skills of any agent in

the system.

4. Communication module: it implements the communication protocol with

other system agents (UserAgents, PlannerAgents, CoachAgents, or

WebAgents). This module is implemented using two sub-modules:

 Transport module: it implements a TCP/IP network-level

communication between two agents running on different computers.

 Language module: it implements a standard version of KQML
43

 that

makes it possible to use a common language between two agents in

MAPWEB.

Figure 5: Skeleton-Agent in MAPWEB.

220 MAPWEB: Cooperation between Planning Agents and Web Agents

The following subsections give a more detailed description of the different agents:

roles, architectures, and organization.

3.1. UserAgents

The main role of UserAgents is to connect the users with MAPWEB. Each UserAgent

uses a set of Graphical User Interfaces (GUI) to communicate with the users and an

implementation of the standard language KQML to communicate with other agents in

the system. Figure 6 presents a modular description of the UserAgent architecture.

Figure 6: UserAgent Architecture.

The Knowledge Module is used by the UserAgent to store a set of different user

profiles and successful old solutions, that can be used by UserAgent (applying its

learning skills in the Learning Module) to analyze and customize the system.
44

The main goals of a UserAgent are:

 To accept problems from users and to present the solutions found by

MAPWEB.

 To analyze the problems and to obtain homogeneous representation for

them.

 To communicate with PlannerAgents in order to request solutions.

For the accomplishment of the previously described goals, it is necessary to provide,

for each particular domain, the specific set of GUIs that can represent all the necessary

input/output information for communication with the external world, and to define an

ontology that allows the other agents in the system to know the type of problem that

has to be solved. Section 5 will present the set of GUIs for a considered domain.

 David Camacho, José M.Molina, Daniel Borrajo, Ricardo Aler 221

3.2. PlannerAgents

Any PlannerAgent has a modular architecture where each module has its own

capabilities and tasks. These are the reasoning agents in the system. Figure 7 depicts

the PlannerAgent’s modular representation.

Figure 7: PlannerAgent Architecture.

Some of the most interesting characteristics of PlannerAgent are:

 Communication module: it implements a subset of specific performatives

(speech-acts in KQML) used by PlannerAgents to share plans or sub-plans.

 Knowledge module: Stores useful information for the agents. It is composed

of two main sub-modules:

 Heterogeneous Information: This sub-module stores useful data

(heterogeneous information) about the application domain, planning

operators, heuristics, information about other agent characteristics,

statistics information, etc.

 Plan server: This module stores old plans or sub-plans that can be used

in finding new solutions.
45

 Control module: it is used to manage the various agent modules. Some of its

main functions are:

 To handle abstract solutions; they should be validated using the

information acquired from other agents, or from other heterogeneous

information sources.

 To build an agenda that handles its own tasks and the questions posed

by other agents.

222 MAPWEB: Cooperation between Planning Agents and Web Agents

 To deal with all possible answers given to questions asked by other

agents and/or users.

 Reasoning module: It is mainly comprised of two sub-modules:

 Learning modules: They can modify the system behavior if the obtained

solutions are successful in solving user problems. Currently, a Case-

Base Planning Module is being developed, and it is used to gain

efficiency in the planning process by retrieving and adapting past stored

solutions; it avoids performing the planning process.
46

 Planning module: it performs the actions necessary to solve the user

problem. Currently, the planning module uses the non-linear planner

PRODIGY4.0.
47

The PlannerAgents use a planner as main reasoning module. The agent generates an

abstract representation of the problem and the specific user queries (given by the

UserAgent). Then, it uses a planner to obtain a very abstract solution (or solutions) of

the problem, and finally cooperates with the WebAgents to fill in the details of these

abstract solutions.

3.3. ControlAgents

As previously described, there are two different types of Control agents in MAPWEB.

They have identical architecture (see Figure 8) but different roles.

Figure 8: Generic ControlAgent Architecture.

We could outline the differences as follows:

1. ManagerAgent:

 There is only one ManagerAgent.

 David Camacho, José M.Molina, Daniel Borrajo, Ricardo Aler 223

 It is responsible to add and remove other agents from the system.

 It controls which agents are active in the agent society.

 It groups agents in teams.

 It determines which are the agents shared by the different teams.

2. CoachAgent:

 It controls a team of agents, guaranteeing stability and smooth operation

of the active agents.

 It reports problems to the ManagerAgent. For instance, when a new

agent is required for the team.

 It guarantees that the agendas of the team members are coherent.

To function correctly, MAPWEB (for any possible multi-agent topology) needs at

least one Manager and one Coach agents to build teams that will be able to reason

about the user problems.

3.4. WebAgent

The WebAgents, like the other system agents, have their own modular architecture (it

is shown in Figure 9). A WebAgent handles (CONTROL MODULE) the questions

received from other agents (PlannerAgents), and translates these questions into

queries to the WEB (INTERNET ACCESS MODULE). The answers from the WEB will be

filtered and stored in a data base (DATABASE FROM WEB). This useful information will

be sent later to the PlannerAgent. WebAgents know various places where to look for

the requested information.

Figure 9: WebAgent Architecture.

224 MAPWEB: Cooperation between Planning Agents and Web Agents

Although MAPWEB has a very general architecture and it is possible to apply

MAPWEB to different domains, the paper presents an implementation of a set of

WebAgents specialized in the task of retrieving, filtering, and representing the

necessary information from the WEB for a specific domain (see Section 5).

4. Problem Solving and Cooperation in MAPWEB

MAPWEB has an architecture where different agents have to cooperate in order to

reach a solution. Different agents need to share their knowledge and skills to

complete the abstract solutions obtained by the PlannerAgent. MAPWEB’s success

depends on the following factors: sharing knowledge to obtain new solutions and

using different Web and reasoning skills by the MAPWEB agents to find useful

solutions for the users. In what follows the format for sharing and communicating

knowledge, and the generic cooperative-solving process in MAPWEB, are analyzed.

4.1. Sharing Information between Agents

Agents in MAPWEB use a common representation for the knowledge. This

characteristic facilitates the process of sharing and reasoning with the knowledge.

Agents use performatives in their communication. Any performative contains an

implicit order to another agent. For communication between system agents, a subset

of the KQML format is currently being used.
48

 This format is shown in Table 1.

Table 1: Some performatives in MAPWEB.

Performative Format

achieve (:content (FLY Company MAD ZAZ…)

:language JAVA

:ontology Electronic-Tourism

:in-reply-to MAPWEB

:sender PAgent1

:receiver WBot1)

tell (:content (FLY IBERIA 323 Price…)

:language JAVA

:ontology Electronic-Tourism

:in-reply-to MAPWEB

:sender WBot1

:receiver PAgent1)

This example illustrates the representation of two performatives: ACHIEVE and TELL.

The first performative (ACHIEVE) is sent by a PlannerAgent (PAgent1) to a WebAgent

 David Camacho, José M.Molina, Daniel Borrajo, Ricardo Aler 225

(WBot1) asking for WEB information the WebAgent is specialized in. The second

performative (TELL) is the reply from the WebAgent to the PlannerAgent; it stores the

information retrieved by the agent WBot1.

There exist other KQML performatives implemented by MAPWEB agents to manage

the group of agents and to allow agent negotiation, such as ACCEPT, REJECT,

REGISTER, UNREGISTER, DELETE, INSERT.

4.2. Cooperation in MAPWeb

This section describes how UserAgents, PlannerAgents, and WebAgents cooperate to

solve problems. From a generic point of view, a problem is a pair (initial situation,

final situation). An example of a problem is the following: a person intends to fix

(final situation) a broken car (initial situation). A solution to a problem is the

sequence of actions to be performed so as to get from the initial to the final situation

(called a plan). Usually, actions are defined in terms of operators. For instance,

screw(x) could be an operator denoting the use of the screwdriver on any screw x.

Therefore, a solution to the car fixing problem could be anything like the plan

presented in Figure 10.

Figure 10: A Possible Car Fixing Plan.

A set of problems that use the same operators is called a domain. The goal of

MAPWEB is to give solutions to problems in a domain as just defined.

The sequence MAPWEB follows to solve a problem is like this:

1. The user interacts with a UserAgent to define his/her problem. Then the

UserAgent sends to a PlannerAgent an ACHIEVE performative containing the

problem definition.

226 MAPWEB: Cooperation between Planning Agents and Web Agents

2. The PlannerAgent receives the problem definition and analyzes it. Usually, a

user problem contains a lot of detail and that makes problem solving

computationally very expensive for classical AI planning systems. For that

reason, before attempting to solve it, the PlannerAgent discards some of the

detail and transforms the user problem into an abstract representation. For

instance, in the car fixing domain, there could be many different kinds of

parts and tools to deal with them. In that case, the PlannerAgent would

reduce the number of different parts and tools to a manageable quantity.

Then, the user problem would be transformed into an abstract representation

that uses only the reduced set of parts and tools. At this point, the

PlannerAgent would use a planning system to solve the abstract problem and

get several possible abstract solutions. However, the user needs all the

details to be able to apply the plan. Furthermore, many of the abstract

solutions might not be valid in reality since they ignore actual details.

Therefore, the abstract plans have to be completed and validated. The

PlannerAgent analyzes which parts of the abstract plans require completion,

and asks for details the WebAgents.

3. WebAgent receives PlannerAgent’s queries for details, looks for information

at those web-sites the agent is specialized in, and returns the information to

the PlannerAgent in a common shared format. If it cannot find the requested

information, the PlannerAgent will be informed, and it will discard all the

plans that include the invalid operator. For instance, different car companies

could maintain web-sites with information on technical characteristics of

cars, tools, and parts, which could be used by the specialized WebAgents to

fill in the requested details. If the WebAgents could not find information for

validating the fixing step, because, for instance, there are no Tools to

handle Cable1, all the plans that include this step will be discarded by the

PlannerAgent.

4. Finally, the PlannerAgent receives a TELL performative from several

WebAgents, validates and completes the abstract plans, and returns complete

plans to the UserAgent. In our example, a possible complete solution would

include which actions to perform and the specific tools and parts to use. This

plan could be utilized directly by the user.

5. Illustrative Application of MAPWEB

In principle, MAPWEB can be applied to many and diverse problem solving domains.

In this section, we describe how MAPWEB has been applied to a particular domain –

“electronic tourism” (or simply e-tourism) – and how the different agents cooperate

to solve problems in this domain. Earlier versions of MAPWEB have been described

 David Camacho, José M.Molina, Daniel Borrajo, Ricardo Aler 227

by Camacho and coauthors.
49

 This section will first present the e-tourism domain

(i.e., how solutions are represented) and then how the different agents in MAPWEB

cooperate to provide solutions to the user. Communication between the UserAgent,

the PlannerAgent, and the WebAgents will be elaborated in detail.

5.1. Electronic Tourism Domain

An e-tourism system has to provide the following services to the user:

1. Informing how to go from the initial to the destination town using different

means of transportation.

2. Lodging at destination.

3. Informing about possibilities when visiting a town (renting a car, local

transport, etc.).

4. Informing how to return to the initial (or other) town.

MAPWEB has the abilities enumerated above. However, in this paper, we will focus

mainly on the logistics problem of providing the user with plans to move from one

place to another. Moving from place to place involves long-range trips that can be

accomplished via airplanes, trains, or buses. It also involves taking local

transportation means (taxi, subway, bus, etc.) to move between airports, bus stations,

or train stations. In order to represent and provide solutions to the user, we have

defined an e-tourism domain that uses the operators illustrated in Table 2.

Table 2: E-tourism planning operators

Operator Arguments

TRAVEL-BY-AIRPLANE User-name, Company, Origin-airport, Destination-airport

TRAVEL-BY-TRAIN User-name, Company, Origin, Destination

TRAVEL-BY-BUS User-name, Company, Origin, Destination

MOVE-BY-LOCALBUS Origin, Destination

MOVE-BY-TAXI Origin, Destination

MOVE-TO Origin, Destination

BOOK-HOTEL-ROOM User-name, Hotel, City

…

5.2. UserAgent PlannerAgent Communication

The UserAgent provides a GUI to the user, so that s/he can describe the problem and

the restrictions associated with it. Obviously, GUIs depend heavily on the problem

domain: other domains would require other GUIs. Figure 11 presents the input-GUI to

the system.

228 MAPWEB: Cooperation between Planning Agents and Web Agents

Figure 11: User Agent Input.

The data the user has to provide to the system is as follows:

 Departure and return dates

 Departure and arrival cities

 Starting and arrival places inside the cities (airport, train station, bus station,

etc.)

 One-way or return trip

 Maximum number of transfers

 Cost (economy class, business class, first class, second class, tourist class,

etc.)

 Long-range transport (airplane, train, or bus)

 David Camacho, José M.Molina, Daniel Borrajo, Ricardo Aler 229

In the example given in Figure 11, the user plans to travel to Barcelona (Spain) from

Madrid (Spain) on the 3
rd

 of June at 8 o’clock. The return date is the 6
th

 of June at 4

or later. The user would like to start his/her trip from an airport and wishes to end it at

a train station in Barcelona. S/he wants to minimize cost and s/he does not specify the

long-range transportation means. Also, s/he does not want to transfer more than once.

Once the UserAgent has received the problem, it sends an ACHIEVE performative to a

PlannerAgent and waits for the solution.

5.3. PlannerAgent WebAgents Cooperation

The PlannerAgent receives from the UserAgent a problem and proceeds with building

an abstract representation that retains only the parts essential for the planning process.

For instance, a typical description of the previous problem for an AI planning system

would include:

 All the cities in the world

 All the airports, train stations, etc. inside those cities

 All the plane, bus, and train companies in the world

 All local transportation means (taxi, subway, etc.) in the cities

Any classical AI planning system would get bogged down if it tries to find a plan by

considering all these elements. Instead, the PlannerAgent builds an abstract problem

in the following way:

1. First, it defines an abstract city. This city includes all the possible local

transport and only the long-range transport terminals that the user wishes to

use. For instance, if the user wants to travel only by plane, the abstract city

would include just airports. The goal is to reduce the number of elements in

the problem, so that the planner can handle them more efficiently. In the

previous example, as there are no restrictions on the long-range transport, the

abstract city would have airports, bus stations, and train stations.

2. Then, this abstract city is repeated as many times as is the maximum number

of transfers supplied by the user. It is important to note that the cities are

abstract cities (i.e. they have no attached names; they are present in the

abstract plan to represent the initial, middle, and final travel points).

3. Finally, the rest of the details provided by the user are ignored at this stage.

For example, departure and arrival times, travel cost, etc. is not considered.

This data will be used later to query the WebAgents and validate the abstract

solutions.

As an illustration, from the problem given by the UserAgent, the PlannerAgent would

construct a planning problem that includes three unnamed cities: city0, city1,

230 MAPWEB: Cooperation between Planning Agents and Web Agents

and city2. city0 is the departure city, city2 is the destination, and city1 is a

(possible) transfer city. Each of the cities includes all possible local transportation

means, abstract locations (hotel1, …) and terminals (airport0,

trainstation0, ...). Finally, the planning problem would include an initial

situation of the user being at airport0 in city0, and the goal situation is that of

the user being at trainstation2 in city2.

The above described abstract problem would be given to the PlannerAgent planner

(Prodigy4.0) which would obtain several possible abstract solutions. In this case, the

planner would reply with the plans given in Figure 12.

Solution 1:

 <move-to trainstation0 bustop01>

 <move-to bustop01 airport0>

 <travel-by-airplane user1 plane0 airport0 airport1>

 <move-to airport1 bustop11>

 <move-by-localbus bustop11 bustop12>

 <move-to bustop12 trainstation1>

 <travel-by-train user1 train1 trainstat1 trainstat2>

Solution 2:

 <move-to trainstation0 bustop01>

 <move-by-localbus bustop01 bustop02>

 <move-to bustop02 airport0>

 <travel-by-airplane user1 plane0 airport0 airport2>

 <move-to airport2 bustop21>

 <move-by-localbus bustop21 bustop22>

 <move-to bustop22 trainstat2>

Figure 12: Two abstract solutions generated by Prodigy for the travel problem.

This is a set of abstract plans that contain no details. Some of the steps in the plan

might not even exist in the real world. Therefore, these plans need to be validated and

completed. This is achieved by querying the WebAgents. In this case, the following

query schemas would be generated:

Queries:

(travel-by-airplane user plane0? Madrid city1?)

(travel-by-train user train1? city1? Barcelona)

 David Camacho, José M.Molina, Daniel Borrajo, Ricardo Aler 231

The queries above have some uninstantiated variables (plane0?, train1?, and

city1?). The variable city1? will be instantiated by the PlannerAgent before

querying the WebAgents. The PlannerAgent will choose several actual cities by using

some heuristics. For every selected city, an actual query will be generated. For

instance, the first query schema would be translated into:

Queries:

(travel-by-airplane user plane0? Madrid Valencia)

(travel-by-airplane user plane0? Madrid Alicante)

These queries (and all the additional information given by the UserAgent) are sent to

several WebAgents that are specialized in airplane travel, so that variable plane0?

is instantiated as well.

A WebAgent receives a query and associated with it data and transforms it into an

actual web query. The WebAgent is familiar with the structure of the data stored at

the web sites it is specialized in, and it knows how to look for information in these

web sources. The retrieved information is then analyzed and stored in a common

template, which is subsequently sent to the PlannerAgent. In our example, the

information in Table 3 would be returned to instantiate the variable plane0?.

Actually, that variable can be instantiated in many different ways, as many as the

possible flights from Madrid to Valencia.

Table 3: Retrieved WebAgent Information.

Information-Flights flight1 flight2 flight3

air-company Iberia Iberia Spanair

http-address www.iberia.es www.iberia.es www.spanair.com

flight-id 323 450 null

ticket-fare 38200 21850 43700

currency ESP ESP ESP

flight-duration Null null null

airport-departure-city MAD MAD MAD

departure-date 03-06-00 03-06-00 03-06-00

airport-arrival-city VLC VLC VLC

return-date 06-06-00 06-06-00 06-06-00

class D D null

number-of-passengers 1 1 1

round-trip one-way one-way one-way

http://www.iberia.es/

232 MAPWEB: Cooperation between Planning Agents and Web Agents

Finally, the PlannerAgent instantiates all the abstract plans for which it has received

from the WebAgents a positive answer for each plan step. Those plans in which one

or several steps received either no answer or an empty answer are rejected. Therefore,

only plausible plans are sent back to the UserAgent. Every abstract plan will be

instantiated into many different actual plans. Table 4 shows two of the generated

solutions.

Table 4: Solutions given by MAPWeb.

Solution1 Solution2

 (move-to trainstation0 bustop01)

 (move-to bustop01 MAD)

 (travel-by-airplane SMejias Iberia MAD

VLC)

 (move-to VLC bustop11)

 (move-by-localbus bustop11 bustop12)

 (move-to bustop11 VLCtrainstation1)

 (travel-by-train Smejias Talgo VLC BCN)

 (move-to BCN bustop21)

 (move-by-localbus bustop21 bustop22)

 (move-to bustop22 hotel2)

 (move-to trainstation0 bustop01)

 (move-by-localbus bustop01 bustop02)

 (move-to bustop02 MAD)

 (travel-by-airplane SMejias plane0 MAD

BCN)

 (move-to BCN bustop21)

 (move-by-localbus bustop21 bustop22)

 (move-to bustop22 hotel2)

5.4. PlannerAgent UserAgent Communication

Finally, the UserAgent receives the list of actual plans and presents them to the user.

Figure 13 shows the output-GUI where the found plans for our problem are displayed.

If the user wants more information about a plan step, s/he can click on the

corresponding operator and get data about departure time, location, etc.

6. Conclusions

We have presented a multi-agent approach (MAPWEB) to solve planning problems

using the information available on the WEB. In particular, this paper focuses on how

to solve user planning problems by means of cooperation between a PlannerAgent

and several WebAgents. This cooperation amounts to dividing the planning problem

into two parts: generation of abstract plans (by the PlannerAgent) and validation-

completion of these plans (by the WebAgents). This is done since planning problems

contain a lot of details that makes the classical AI problem solving computationally

very expensive.

 David Camacho, José M.Molina, Daniel Borrajo, Ricardo Aler 233

Figure 13: UserAgent Output.

Therefore, before attempting to solve a planning problem, the PlannerAgent discards

some of the details and builds an abstract, easier to solve, version. Then, several

abstract solutions are obtained. However, many of the abstract solutions might not be

valid in reality due to the fact that some of the actual details are ignored. Therefore,

the abstract plans have to be completed and validated.

There is another important reason to divide the planning process. Information on the

WEB is heterogeneous and is provided in multiple formats. Therefore, it makes sense

to have many different agents specialized in each information source or web site.

Thus, WebAgents not only free PlannerAgents from the details, they also isolate them

from the complexity of the information sources.

MAPWEB is not only a set of conceptual ideas. The described architecture has been

implemented. Also, it has been applied to an actual domain (e-tourism) where the

cooperation characteristics described above are fully exploited.

234 MAPWEB: Cooperation between Planning Agents and Web Agents

7. Future Directions

Some of the lines of future work include:

 Cooperation between several PlannerAgents. In many planning domains, a

problem can be divided into a set of sub-problems. Each sub-problem could

be sent to a different PlannerAgent. This would be useful for two reasons.

First, problem solving can be parallelized. And, second, different kinds of

sub-problems could be sent to specialized PlannerAgents that might use

different planning techniques.

 Reuse of information stored in both PlannerAgents and WebAgents. Agents

can learn from experience. For instance, if a PlanningAgent has previously

solved a problem, it can be stored in an internal database for later use, either

by the same agent or by others. In a similar manner, a WebAgent can reuse

information retrieved previously to reduce the WEB access.

 Application of Case-Based Reasoning techniques,
50

 so that new planning

problems can be solved by adapting the plans from previously solved similar

problems. This would reduce enormously the planning process which is

computationally very expensive.

 Finally, in order not to overload the user with too many plans, MAPWEB

should be able to rank the solutions and recommend the best ones using user

profiles and by learning from user’s previous behavior.

 David Camacho, José M.Molina, Daniel Borrajo, Ricardo Aler 235

Notes:

1 Jose Luis Ambite and Craig A. Knoblock, “Agents for information gathering,” in IEEE

Expert: Intelligent Systems and their Applications (September/October 1997); Craig A.

Knoblock and José Luis Ambite, “Agents for Information Gathering,” in Software

Agents, ed. J. Bradshaw (Menlo Park, CA: AAAI/MIT Press, 1997).
2 Oren Etzioni, “Moving up the information food chain,” AI Magazine 18, 2 (1997): 11-

18.
3 Michael N. Hunhs and Munindar P. Singh, Readings in Agents (San Francisco: Morgan

Kaufmann, 1997).
4 J. Bradshaw, ed., Software Agents (Menlo Park California: AAAI Press, 1997);

Michael R. Genessereth and Steven P. Ketchpel, “Software agents,” Communications of

the ACM 37, 7 (1994): 48-53.
5 W. Brenner, R. Zarnekow, and H. Wittig, Intelligent Software Agents. Foundations and

Applications, (New York, Springer-Verlag, 1998); Michael Wooldridge and Nicholas R.

Jennings, “Intelligence agents: Theory and practice,” Knowledge Engineering Review

(October 1994).
6 Ricardo Aler, Daniel Borrajo, and Pedro Isasi, “Genetic programming and deductive-

inductive learning: A multistrategy approach,” in Proceedings of the Fifteenth

International Conference on Machine Learning, ICML'98, ed. Jude Shavlik (Madison,

Wisconsin, July 1998), pp. 10-18.
7 Manuela M. Veloso and Jim Blythe, “Linkability: Examining causal link commitments in

partial-order planning,” in Proceedings of the Second International Conference on AI

Planning Systems (Chicago, IL: AAAI Press, June 1994), pp. 170-175.
8 D.E. Wilkins and D.L. Myers, “Multiagent planning architecture,” in Proceedings on

The Fourth International Conference on Artificial Intelligence Planning Systems AIPS98

(June 1998).
9 Katya P. Sycara, “Multiagent systems,” AI Magazine 18, 2 (1998).
10 Alan H. Bond and Less Gasser, Readings in Distributed Artificial Intelligence (San

Francisco California: Morgan Kaufmann, 1988); Les Gasser, “An Overview of

Distributed Artificial Intelligence,” Distributed Artificial Intelligence: Theory and Praxis

(Kluwer Academic Publishers, 1992), pp. 9-30.
11 Nicholas R. Jennings, Coordination Techniques for Distributed Artificial Intelligence

(O'Hare et al., 1996), pp. 187-210.
12 Brenner, Zarnekow, and Wittig, Intelligent Software Agents.
13 Bradshaw, Software Agents; Michael N. Hunhs and Munindar P. Singh, Readings in

Agents.
14 Hyacinth S.Nwana, “Software agents: An overview,” Knowledge Engineering Review 11,

3 (October/November, 1996): 205-224.
15 Wooldridge and Jennings, “Intelligence agents: Theory and practice.”
16 R. Armstrong, D. Freitag, T. Joachims, and T. Mitchell, “Webwatcher: A learning

apprentice for the world wide web,” in Working Notes of the AAAI Spring Symposium:

Information Gathering from Heterogeneous, Distributed Environments (Stanford

University: AAAI Press, 1995), pp. 6-12.

236 MAPWEB: Cooperation between Planning Agents and Web Agents

17 H. Lieberman, “Letizia: An agent that assists web browsing,” in Proocedings of the

International Joint Conference on Artificial Intelligence IJCAI95 (1995), pp. 924-929.
18 Armstrong, Freitag, Joachims, and Mitchell, “Webwatcher.”
19 Erik Selberg and Orentz Etzioni, “The Metacrawler architecture for resource aggregation

on the web,” IEEE Expert (IEEE, January/February 1997): 8-14.
20 Brenner, Zarnekow, and Wittig, Intelligent Software Agents; Wooldridge and Jennings,

“Intelligence agents: Theory and practice.”
21 Chelliah Thirunavukkarasu, Tim Finin, and James Mayfield, “Secret agents - a security

architecture for the KQML agent communication language,” in Proceedings of the ACM

CIKM Intelligent Information Agents Workshop (New York: Association of Computing

Machinery, December 1995).
22 Michael R. Genessereth and Steven P. Ketchpel, “Software agents;” Wooldridge and

Jennings, “Intelligence agents: Theory and practice.”
23 Orentz Etzioni, N. Lesh, and R. Segal, “Building softbots for UNIX, in Software Agents-

Papers from 1994 Spring Symposium, Technical Report SS-94-03 (AAAI Press, 1994),

pp. 9-16.
24 Michael Coen, SodaBot: A Software Agent Environment and Construction System,

Technical Report 1493 (MIT AI Lab, 1994).
25 Yigal Arens, Craig A. Knoblock and Chun-Nan Hsu, “Cooperating agents for

information retrieval,” in Proceedings of the Second International Conference on

Cooperative Information Systems (Toronto, Ontario, Canada: University of Toronto

Press, 1994); Craig A. Knoblock and José Luis Ambite, Software Agents.
26 J.L. Ambite and C. A. Knoblock, “Planning by rewriting: Efficiently generating high-

quality plans,” in Proceedings of the Fourteenth National Conference on Artificial

Intelligence (1997); Craig A. Knoblock, Steven Minton, Jose Luis Ambite, and Naveen

Ashish, “Modeling web sources for information integration,” in Proceedings of the

Fifteenth National Conference on Artificial Intelligence (Madison, WI, 1998).
27 Oren Etzioni, “Moving up the information food chain.”
28 Erik Selberg and Orentz Etzioni, “The Metacrawler architecture for resource aggregation

on the web.”
29 H. Lieberman, “Letizia: An agent that assists web browsing.”
30 Thorsten Joachims, Dayne Freitag, and Tom Mitchell, “A tour guide for the world wide

web,”in Proceedings of IJCAI97 (August 1997); R. Armstrong, D. Freitag, T. Joachims,

and T. Mitchell, “Webwatcher: A learning apprentice for the world wide web.”
31 J. Hullen, Ralph Bergmann, and F. Weberskirch, “Webplan: Dynamic planning for

domain-specific search in the internet,” in Workshop Planen und Konfigurieren PuK-99

(1999).
32 Chelliah Thirunavukkarasu, Tim Finin, and James Mayfield, “Secret agents - a security

architecture for the KQML agent communication language.”
33 Reticular Systems, AgentBuilder. An Integrated Toolkit for Constructing Intelligent

Software Agents (Reticular Systems Inc., February 1999).
34 Deepika Chauhan and Albert D. Baker, “Jafmas: A multiagent application development

system,”in Proceedings on The Second International Conference on Autonomous Agents

Agent's 98 (Minneapolis, May 9-13, 1998).
35 <http://www.fipa.org> (27 May 2001).

 David Camacho, José M.Molina, Daniel Borrajo, Ricardo Aler 237

36 Jeremy Pitt and Fabio Bellifemine, “A protocol-based semantics for FIPA’97 acl and its

implementation in Jade,” in Proceedings of AI*IA (1999); Fabio Bellifemine, Agostino

Poggi, and Giovanni Rimassa, “Jade - a fipa-compliant agent framework,” in

Proceedings of PAAM’99 (London, April 1999), pp. 97-108.
37 Charles Petrie, “Agent-based engineering, the web, and intelligence,” IEEE Expert 11, 6

(December 1996): 24-29.
38 Anthony Chavez and Pattie Maes, “Kasbah: An agent marketplace for buying and selling

goods,” in Proceedings of the First International Conference on the Practical

Application of Intelligent Agents and Multi-Agent Technology (London, UK, April

1996).
39 David Wilkins and Karen Myers, “A common knowledge representation for plan

generation and reactive execution,” Journal of Logic and Computation 5, 6 (1995): 731-

761; D.E. Wilkins and D.L. Myers, “Multiagent planning architecture.”
40 Manuela Veloso, Tucker Balch, and Scott Lenser, “Integrating information agents,

planning, and execution monitoring,” in Proceedings of Agents-2000 (June 2000).
41 J. Baxter and R. Hepplewhite, “A hierarchical distributed planning framework for

simulated battlefield entities,” in Proceedings of 19th Workshop of the UK Planning and

Scheduling Special Interest Group PLANSIG 2000 (December 2000).
42 Any MAPWEB-agent is built using a set of standard and reusable Java packages and

classes implemented as the basis to build the different system agents.
43 Tim Finin, Jay Weber, et. al., Draft specification of the KQML agent communication

language (1993); Tim Finin, R. Fritzson, D. Mackay, and R. McEntire, “KQML as an

agent communication language,”in Proceedings of the Third International Conference

on Information and Knowledge Management CIKM94 (New York: Association of

Computing Machinery, 1994), pp. 456-463.
44 This characteristic is being developed at the moment.
45 This module is being developed at the moment.
46 Manuela M. Veloso and Jaime G. Carbonell, “Derivational analogy in PRODIGY:

Automating case acquisition, storage, and utilization,” Machine Learning 10, 3 (March

1993): 249-278; J. Hullen, Ralph Bergmann, and F. Weberskirch, “Webplan: Dynamic

planning for domain-specific search in the Internet.”
47 M. Veloso, J. Carbonell, A. Perez, D. Borrajo, E. Fink, and J. Blythe, “Integrating

planning and learning: The Prodigy architecture,“ Journal of Experimental and

Theoretical AI 7 (1995): 81-120.
48 Finin and Weber, Draft specification of the KQML agent communication language.
49 David Camacho, Daniel Borrajo, and Jose Manuel Molina, “Travelplan: A multiagent

system to solve web electronic travel problems,” in Workshop on Agent-Based

Recommender Systems. Fourth International Conference on Autonomous Agents

(Barcelona, Catalonia Spain: ACM, June 2000); David Camacho, José M. Molina, and

Daniel Borrajo, “A multiagent approach for electronic travel planning,” in Proceedings

of the Second International Bi-Conference Workshop on Agent-Oriented Information

Systems AOIS-2000 (Austin, TX, USA: AAAI-2000).
50 Agnar Aamodt and Enric Plaza, “Case based reasoning: Foundational issues,

methodological variations and system approaches,” AI Communications 7, 1(1994): 39-

59; Manuela M. Veloso and Jaime G. Carbonell, “Derivational analogy in PRODIGY:

Automating case acquisition, storage, and utilization.”

238 MAPWEB: Cooperation between Planning Agents and Web Agents

DAVID CAMACHO is a lecturer at the Department of Computer Science, Universidad

Carlos III de Madrid (UC3M). He is a member of the Complex and Adaptive Systems Group

(SCALab). He holds a B.Sc. in Physics Science (1994) from the Universidad Computense de

Madrid. He has researched in several areas, including planning, inductive logic programming,

fuzzy logic, and multi-agent systems. He has also participated in international projects on

automatic machine translation and optimization of industrial processes. Address for

correspondence: Universidad Carlos III de Madrid, Avda. de la Universidad, 30, 28911

Leganés (Madrid), Spain, E-mail: dcamacho@ia.uc3m.es

JOSÉ M. MOLINA received his Ph.D. in Telecommunication Engineering from the

Universidad Politecnica de Madrid, in 1997. He has been a member of the System, Signal and

Radio Communications group in the University Politecnica of Madrid since1992. He is an

Associate Professor at the Computer Science Department, Carlos III of Madrid University. He

also participates in the Complex Adaptive Systems group. He has published more than 5

journal and 50 conference papers. His current research focuses on the application of soft

computing techniques (Neural Networks, Evolutionary Computation, Fuzzy Logic and Multi-

agent Systems) to engineering problems, such as RADAR, robot control and vision. Address

for correspondence: Universidad Carlos III de Madrid, Avda. de la Universidad, 30, 28911

Leganés (Madrid), Spain, E-mail: jmolina@ia.uc3m.es

DANIEL BORRAJO has been University Professor in Computer Science at the Universidad

Carlos III de Madrid (UC3M) since 1998. Previously, he was Associate Professor at UC3M

and Universidad Politécnica de Madrid (UPM). He received his Ph.D. in Computer Science

from UPM in 1990. He holds a B.Sc. in Computer Science (1987) from the Universidad

Politécnica de Madrid. He has been vice-dean of the Computer Science degree at UC3M and,

currently, he is the head of the Department of Computer Science. He has published over 50

journal and conference papers. Dr. Borrajo’s main research interest is the integration of

different Artificial Intelligence techniques, especially concerning machine learning. His main

research interest now is focusing the learning system towards real-world planning domains and

problems, considering the quality of the solutions, and the self-experimentation of the system.

Address for correspondence: Universidad Carlos III de Madrid, Avda. de la Universidad, 30,

28911 Leganés (Madrid), Spain, E-mail: dborrajo@ia.uc3m.es

RICARDO ALER is a lecturer at the Department of Computer Science, the Universidad

Carlos III. He has researched in several areas, including automatic control knowledge learning,

genetic programming, and machine learning. He has also participated in international projects

on automatic machine translation and optimization of industrial processes. He holds a PhD in

Computer Science from Universidad Politécnica de Madrid (Spain) and a M.Sc. in Decision

Support Systems for Industry from Sunderland University (UK). He graduated in Computer

Science at Universidad Politécnica de Madrid. Address for correspondence: Universidad

Carlos III de Madrid, Avda. de la Universidad, 30, 28911 Leganés (Madrid), Spain, E-mail:

aler@inf.uc3m.es

	1. Introduction
	2. Related Work
	2.1. Intelligent Agents
	2.2. WebAgents
	2.3. Multi-Agent Systems

	3. MAPWEB: A Multi-Agent Architecture for Reasoning on the Web
	3.1. UserAgents
	3.2. PlannerAgents
	3.3. ControlAgents
	3.4. WebAgent

	4. Problem Solving and Cooperation in MAPWEB
	4.1. Sharing Information between Agents
	4.2. Cooperation in MAPWeb

	5. Illustrative Application of MAPWEB
	5.1. Electronic Tourism Domain
	5.2. UserAgent ® PlannerAgent Communication
	5.3. PlannerAgent ® WebAgents Cooperation
	5.4. PlannerAgent ® UserAgent Communication

	6. Conclusions
	7. Future Directions
	Notes

