
INFORMATION & SECURITY. An International Journal, Vol.10, 2003, 97-104. 

 

  I&S 

ACHIEVING INTEROPERABILITY OF COMMAND 

AND CONTROL SYSTEMS USING TRANSLATION 

GATEWAYS
1
 

David PERME, Mark WHELAN and William P. LOFTUS 

Issue of Interoperability  

Over the last several decades, the military has greatly benefited from the increased 

knowledge and capabilities provided by using computerized command and control 

systems. As this use has expanded exponentially, so has the need to integrate these 

systems. The breadth of computing technology at the component, functional, and 

mission level has further complicated the issue of interoperability. By their nature, 

these disparate systems have varying levels of fidelity, granularity, quality and 

availability. The cost of establishing collaboration between these systems is typically 

high, and is complicated by differing organizational readiness levels, willingness, and 

technical ability to affect collaboration. The opportunity to enable interoperability, 

therefore, has great value, provided it can address these factors and more.  

The need for translation of information and data to forms that are readable and 

interpretable has continuously challenged users of computer systems. Over time, the 

technologies employed to accomplish interoperability have evolved. Initially, and still 

prevalent today, one-to-one interfaces explicitly define how two systems interact. 

This type of approach works but does not scale. Other approaches, such as shared 

databases, common data repositories, and defined common standard messaging and 

interface formats, present solutions to some interoperability issues but are not 

panaceas. Each approach is appropriate in given circumstances. Attempts to provide a 

single solution for all scenarios typically fall short due to technical challenges, 

adoption resistance, and funding availability.  

The following sections present an approach that we have used successfully to  

simplify system communication and interoperability by a system-neutral layered 

gateway. The approach addresses the realities and complexities of the systems’ 



98 Achieving Interoperability of Command and Control Systems  

environment and leverages domain expertise and emerging technologies including 

web technologies and expert systems.  

Layered Translation Gateways 

The best response to the issue of system interoperability is one that recognizes that 

successful systems are those that add value, minimize impact to existing systems, and 

can evolve over time. Our experience in integrating diverse systems (such as C4I 

systems) is that layered gateway architectures enable successful interoperability 

between systems, while isolating the impact of changes to any system. Value is 

derived by delivering to a system only that information that is used by that system. 

Moreover, layered translation gateways deliver and receive information to or from a 

system, in the format and medium native to that system. Additionally, a well designed 

layered architecture provides the opportunity to insulate layers from the impact of 

change (new systems, modification to existing systems, system retirement), thereby 

reducing the overall impact facilitating evolution of the gateway when change occurs.  

At the core, system communication is translation. Translation is the conversion of one 

data format or protocol to another while retaining the meaning and context of the 

original. The key factors in translation include the data itself, the format of the data, 

the medium of transmission, and the context of the data that turns it into useful 

information. A gateway must be able to deal with all of these factors. The data, 

format, and medium translation challenges are relatively straightforward, discrete, 

and solvable transformations. The context translation challenge is more complex and 

involves the application of subject matter knowledge and expertise.  

There are for basic components to flexible and adaptable gateway architectures: 

1. System-neutral data interchange format 

2. External systems interface layers 

3. Translation layer 

4. Intelligence layer 

The first step is to define a system-neutral, data interchange format. By developing a 

common data model and schema, a gateway repository or data warehouse is created 

to facilitate the integration of disparate systems. Today, this data model is usually 

described by class diagrams and an XML schema. With a defined data model, 

appropriate programming interfaces to the data translation layer are easily described 

and developed.  

The focus of the external systems interface layer is the integration with various lower 

level architectures and protocols using reader-writers and adaptors. This approach 

provides the greatest flexibility for many-to-many system integrations as depicted in 



  David Perme, Mark Whelan and William P. Loftus 99 

Figure 1. Within a system of systems, there exist three types of relationships: one-to-

one, one-to-many, and many-to-many. A one-to-one relationship is often referred to 

as a point-to-point interface. Two systems talk to each other directly through a 

defined method or protocol. There is only one interface and changes to a system will 

result in changes to, at most, one interface. A one-to-many relationship describes 

multiple interfaces from a single system to a number (N) of other external systems. A 

change to the single system has the potential to affect N interfaces. A many-to-many 

relationship describes interfaces among and between a number of systems (N). Every 

system has an interface with every other system. While this provides the maximum 

potential for information exchange, it also creates [N*(N-1)]/2 interfaces. These 

relationships, however, can be normalized using the system-neutral data interchange 

format by reducing a many-to-many relationship to a one-to-many relationship. Each 

system needs to only read and write a single canonical format.  

System

A

System

B

System

C

System

M

.

.

.

System

Z

System

Y

System

X

System

N

.

.

.

Translation Data Repository

Tr
an

sla
tio

n 
La

ye
r

( A
pp

lic
at

ion
 L

ay
er

 ) 

Pr
ot

oc
ol 

Ad
ap

to
rs

.

.

.

Protocol 1

Protocol 2

Protocol 3

Protocol n

Many – Many Translation Gateway

System

A

System

B

System

C

System

M

.

.

.

System

Z

System

Y

System

X

System

N

.

.

.

Translation Data Repository

Tr
an

sla
tio

n 
La

ye
r

( A
pp

lic
at

ion
 L

ay
er

 ) 

Pr
ot

oc
ol 

Ad
ap

to
rs

.

.

.

Protocol 1

Protocol 2

Protocol 3

Protocol n

Many – Many Translation Gateway

 

Figure 1: Translation Gateway 

A translation layer transforms the data from the exporting systems into the common 

representation. The protocol adaptor extracts information from the repository, 

formats it, and communicates the information in the correct protocol to the receiving 

systems. Gestalt’s experience in integrating real world C4I systems with simulation 

models has shown that a common representation becomes a forcing function for the 

information and is necessary to be able to translate the intent of the communication. 

The focus of a translation layer is to manage both data and business rules. Data is the 

information that is exchanged between systems. Business rules apply the logic of 

translation and transformation.  



100 Achieving Interoperability of Command and Control Systems  

The data becomes the focus point for the incorporation of intelligent agent 

technology, via an intelligence layer. This layer reduces man-in-the-loop 

dependencies, enables smart system-wide decision making, and maintains meaningful 

communication. Often the business rules for the transformation and communication 

can be encapsulated into the intelligence layer. This approach allows the entire 

gateway translation to be applied to an enterprise, where the intelligent agents 

manage the variance between organizations. 

High-level Development Approach 

To develop a system-independent translation protocol, the data models and business 

rules of the target systems must be examined. In addition, current and future 

requirement sets for these systems should be understood. From this examination, a 

common system and data-neutral data schema can be designed and developed. The 

first step is to select an appropriate set of candidate systems that will form the basis 

for the development of a common system-neutral data schema. Typically, these 

systems are large in scale and produce complex message sets. There is a need to 

examine these message sets to identify key data elements and business rules 

associated with the data contained in the messages themselves. From this 

examination, a data population set from each of the systems can be derived. In this 

step, data discovery and cataloging is performed. The cataloging can be as simple as 

capturing the data population set in a spreadsheet. The key is to represent a system’s 

data in a template form that retains information regarding its native schema while 

allowing the commonality of a template to begin the process of relating data elements 

from separate systems to each other.  

Once all the data has been categorized from the candidate systems, the initial step of 

an object-oriented analysis can begin, that is, to build an initial Unified Modeling 

Language (UML) class diagram of the intended data-neutral data schema. The 

purpose of establishing a class diagram is to represent the class structures and 

hierarchies as well as the relationships between the class structures. The task of 

normalization is to then analyze the UML class diagram and promote like attributes 

into superclasses, compress the depth of the class structure wherever possible and test 

it against scenarios developed in the data discovery and cataloging phase. 

Once the data to be communicated is well-understood the functions and duties of each 

layer in the architecture must be defined. The interfaces between the layers must also 

be defined and documented. Armed with the class diagram, the interface between the 

native system data format and the common data model can be defined and designed. 

In our experience, the best approach for reuse and interoperability is to use a loosely-

coupled Application Programming Interface (API) approach as the interface into each 

layer. An API for the architectural layer performs the data transformation into the 



  David Perme, Mark Whelan and William P. Loftus 101 

common data model. This API should allow for interfaces with all of the exporting 

systems that are selected and should be designed to allow for extensibility to future 

systems integration. XML has quickly gained traction in the commercial field as the 

document interchange description format for interoperability between systems. In the 

digital world today, there exist multiple XML vocabularies as well as software that 

perform the translation from one XML vocabulary to another. XML also brings along 

many tools, which enable XML documents to be processed with a minimum of 

programming effort. For these reasons, an XML schema should be derived from the 

class structure defined in the above steps.  

The last step of a successful translation gateway is incorporation of business rules. 

This refers to the data fusion or disaggregating of incoming or outgoing data explicit 

for each integrated system. These rules must exist in a dedicated architectural 

component of a translator. This component is normally defined as an interface API 

between the normalized and the system-specific data representations. The success of 

a translator is dependent on the ease of configuring the business rules. Rule-based 

expert systems can be used to accomplish a flexible implementation of business rules. 

More specifically, commercially available open system standard software tools can be 

used. The use of these tools eliminates specific translation idiosyncrasies from the 

overall translator, and instead allows the inference engine and corresponding rules to 

ensure that the correct business rules are applied. These translations can be tested and 

easily adjusted or tuned to produce the desired outcomes. By isolating the business 

rules in a separate architectural layer, the impact of tuning on the translation software 

baseline is minimized.  

Example 

In the late 1990s, Gestalt personnel began the integration of the Air Operations 

Center (AOC) command and control systems to a suite of simulations. The AOC to 

Simulation Interface (ASI) initially integrated the Air Force’s Air Warfare 

Simulation, AWSIM, to the main AOC command and control system. Since that 

initial integration several command and control systems have been integrated 

including the Theater Battle Management Core System (TBMCS). ASI employs a 

layered architecture. Three primary layers constitute the ASI architecture. Two 

service layers, the Simulation Services Layer and the C4I Services Layer, handle the 

data capture and dissemination processes. These processes employ publish and 

subscribe mechanisms, and are compatible with both the Aggregate Level Simulation 

Protocol (ALSP) and the High Level Architecture (HLA) Runtime Infrastructure 

(RTI), and produce USMTF, TADIL, and XML messages. The third ASI 

architectural layer is the Translation Service Layer that provides the data translation 

services between the integrated systems using Gestalt’s proprietary Command and 



102 Achieving Interoperability of Command and Control Systems  

Control Data Interchange Format (C2DIF), a common, system neutral data 

representation that acts as the data and knowledge repository. The ASI system has 

been used at every major exercise (well over 70) since 1997 and has consistently 

demonstrated its versatility and viability. ASI’s layered architectural approach is 

extensible, providing the capability for easily establishing interoperability between 

and among other existing legacy, joint, and coalition systems, as well as future 

systems. The ASI system has been extended beyond its original objectives via the 

integration with numerous simulation models including the National Air and Space 

Warfare Model (NASM), and the Navy’s Research, Evaluation and System Analysis 

Simulation (RESA) and Joint Semi-Automated Forces (JSAF) models.  

In 2002, the Gestalt team, sponsored by the Air Force Research Lab (AFRL), 

initiated the deployment of the Intelligent Mission Controller Node (IMCN) system. 

The IMCN system employs expert system technology using an intelligent agent 

framework. Concurrent with this development effort, the C2DIF data representation 

was expanded and matured to incorporate a more robust representation of the 

information elements associated with air missions and air warfare. The IMCN system 

is implemented to reason over any of the C2DIF data elements, providing the ability 

to develop intelligent agents that act across multiple air mission tasks. Using IMCN 

allows data to be represented devoid of any consideration for the business rules of 

any particular translation, knowing that the expert system can handle the business 

rules. A system prototype was first successfully used at Blue Flag ’00-4 and at all 

major exercises since, including UFL ’01.  

The key success factor in the use of intelligent agents is to define them such that the 

complexity of the rule base does not outweigh the value gained by their use. Seeking 

a complex rule base to address all issues would have resulted in failure. However, 

Gestalt segmented intelligent agent scope and functionality, establishing reasonable 

rule sets that could be easily implemented and extremely impactful.  

One example of an intelligent agent we have employed in this fashion is in air 

mission route planning which automates the ingress and egress of air missions, taking 

into account ground-based threats. Another example is in weaponeering, i.e., the 

automation of the process of pairing squadrons and airframes with weapons and 

targets. 

Overall, ASI and IMCN have allowed the Air Force to integrate several command 

and control systems with a suite of simulators. The business results have been 

significant. ASI is a system that has reduced manning budgets by a factor of four, 

produced higher-quality execution, and lower future integration costs. 



  David Perme, Mark Whelan and William P. Loftus 103 

Summary  

Translation gateways are a viable method for increasing interoperability between 

systems and decreasing the complexity of the integration. The development and use 

of system-neutral data schemas, coupled with translation services, enables the 

exponential power of many-to-many collaborative relationships for the linear cost and 

complexity of a one-to-many integration. This is achieved through an approach that 

incorporates sound design principles (rigorous analysis and object-oriented 

techniques), commercial best practices (Application Programming Interfaces and 

XML), and advanced technologies (intelligent agents).  

 

 

Notes: 

____________________________ 

1 This article is based Technical Report 2002-CC-01 -TG of Gestalt LLC. The company 

provides products and services to governments and Fortune 500 companies that address 

their collaboration and interoperation needs related to network-centric decision support 

systems including command and control, modeling and simulation, and enterprise 

business systems. Gestalt is an information technology firm that helps decision-makers 

increase  their  return  on  investment  in existing systems through the application of state- 

of-the-art interoperation technologies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



104 Achieving Interoperability of Command and Control Systems  

 

 

 

DAVID PERME has twelve years experience in the executive management and operations of 

advanced software solution providers, beyond his ten years of experience in the Air Force. He 

holds a BS degree in Aerospace Engineering, Kent State University, and MS in Computer 

Science, Boston University. Mr. Perme has directed, supported, and evaluated hundreds of US 

Air Force, NATO, and Joint exercises and experiments world-wide. He was a principal lead 

and developer on one of the most successful interoperability programs in use today, the 

Aggregate Level Simulation Protocol (ALSP). His work and influence enabled the US Army’s 

standard aggregate level simulator, the Corps Battle Simulation (CBS), to interoperate with the 

US Air Force’s standard aggregate level simulation, the Air Warfare Simulation (AWSIM). 

The program, originally designed to be a prototype only, was so successful in execution that it 

has yet to be supplanted today. Mr. Perme was the designer and principal developer of the 

most successful C4I-to-simulation development effort to date. The program, initially begun as 

a Defense Modeling and Simulation Office effort termed Project Real Warrior (PRW), has 

evolved into the AOC Simulation Interface (ASI). Mr. Perme restructured and selectively re-

engineered components of the C4I interface prototype, at the same time that the system was 

being used for major joint exercises. Currently, Mr. Perme is a Managing Director and Co-

Founder of Gestalt. LLC. Contact address: 11 Federal Street, The Ops Building. Camden. NJ 

08103, USA. Fax: 276-200-0541. E-mail: dperme@gestalt-llc.com. 

MARK WHELAN has twenty years experience in information technology, systems 

integration, and web services. He holds BS in Computer Science, Penn State University, and 

MBA, St. Joseph’s University, Philadelphia. His background includes various management 

positions in engineering and technology arenas serving the government and commercial 

sectors. Mr. Whelan combines strong experience in modeling and simulation, operational 

excellence through technology innovation, and strategic consulting. Prior to Gestalt, Mr. 

Whelan was Vice President, Operations, for Breakaway Solutions. Mr. Whelan led all 

professional services activities in the Mid-Atlantic region covering systems development and 

integration of web services for e-business, е-commerce, content management, and customer 

relationship management solutions. Currently, Mr. Whelan is the Managing Director of 

Gestalt. E-mail: mwhelan@gestalt-llc.com. 

WILLIAM P. LOFTUS has seventeen years experience in the executive management and 

operations  of advanced software solutions providers. He holds BS and MS in Computer 

Science, Villanova University, Villanova, PA. Currently he is the President. CEO, and Co-

Founder of Gestalt, LLC. Previously, Mr. Loftus has served as the CEO of Breakaway 

Solutions, Chief Development Officer of the same company, founder and CEO of WPL 

Laboratories, manager of R&D at Unisys. Mr. Loftus has consulted numerous Fortune 500 and 

emerging companies as well as a number of investment bankers and venture capitalists. Mr. 

Loftus has co-authored numerous papers, IEEE standard P1430, and a best selling textbook. 

Java Software Solutions, currently used in over 400 universities world-wide and translated 

into Korean and Italian. He has also contributed to research in compiler theory, real-time 

software, software architectures, and interoperability. Mr. Loftus has received many awards 

including a Special Achievement Award from DARPA. recognition by the City of Philadelphia 

as one of the 40 most accomplished individuals under 40 years old in 1999, and was named as 

a finalist for the E&Y Entrepreneur of the Year award in 1999. 

El-mail: wloftus@gestalt-llc.com. 

mailto:dperme@gestalt-llc.com
mailto:mwhelan@gestalt-llc.com
mailto:wloftus@gestalt-llc.com

	Issue of Interoperability
	Layered Translation Gateways
	High-level Development Approach
	Example
	Summary
	Notes

