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Abstract: Dempster’s rule, Yager's rule and Dubois-Prade’s rule for belietfu
tions combination are generalized to be applicable to hyper-power setsiace
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1 Introduction

Belief functions are one of the widely used formalisms focentainty representation
and processing. Belief functions enable representatianaafmplete and uncertain
knowledge, belief updating and combination of evidencdieB&nctions were origi-
nally introduced as a principal notion of Dempster-Shafeedry (DST) or the Math-
ematical Theory of Evidence [12].

For a combination of beliefs Dempster’s rule of combinai®nsed in DST. Un-
der strict probabilistic assumptions, its results areexirand probabilistically inter-
pretable for any couple of belief functions. Nevertheldsse assumptions are rarely
fulfilled in real applications. It is not uncommon to find exales where the assump-
tions are not fulfilled and where results of Dempster’s ruke @unter-intuitive, e.g.
see [1, 2, 13], thus a rule with more intuitive results is fegglin such situations.

Hence, a series of modifications of Dempster’s rule were astggl and alterna-
tive approaches were created. The classical ones are DamiBrade’s rule [9] and
Yager’s belief combination rule [15]. Others include a widass of weighted oper-
ators [11], the Transferable Belief Model (TBM) using thecadled non-normalized
Dempster’s rule [14], disjunctive (or dual Demspter’skeraf combination [4, 8], com-
bination 'per elements’ with its special case — minC combiorg see [3, 5], and
other combination rules. It is also necessary to mentiomtatghod for application of
Dempster’s rule in the case of partially reliable input &fli[10].
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A brand new approach performs the Dezert-Smarandache (mrspter-Shafer
modified) theory (DSmT) with its DSm rule of combination. Taare two main dif-
ferences: 1) mutual exclusivity of elements of a frame ofeliement is not assumed in
general; mathematically it means that belief functionsratedefined on the power set
of the frame, but on a so-called hyper-power set, i.e., ob#aekind lattice defined by
the frame; 2) a new combination mechanism which overconasgmms with conflict
among the combined beliefs and which also enables a dynassimnf of beliefs.

As the classical Shafer’s frame of discernment may be censitithe special case
of a so-called hybrid DSm model, the DSm rule of combinat®ndampared with the
classic rules of combination in the publications about DM TL3].

Unfortunately, none of the classical combination rules lteesn formally general-
ized to hyper-power sets, thus their comparison with the B8enis not fully objective
until now.

The present paper brings a formal generalization of theidakDempster’s, Dubois-
Prade’s, and Yager's rules to hyper-power sets. These glerations perform a solid
theoretical background for a serious objective comparisothe DSm rule with the
classical combination rules.

The classic definitions of Dempster’s, Dubois-Prade’s, #agder's combination
rules are briefly recalled in Section 2 and basic notions omD$Dedekind lattice,
hyper-power set, DSm models, and DSm rule of belief comlzinatn Section 3.

A generalization of Dempster’s rule is presented in Secticend a generalization
of Yager's rule in Section 5. Both these classic rules amgghiforwardly generalized
as their ideas work on hyper-power sets simply without aoplem.

More interesting and more complicated is the case of DuBaagle’s rule. The
nature of this rule is closer to DSm rule, but on the other thedyeneralized Dubois-
Prade’s rule is not compatible with a dynamic fusion in gaheit works only for
a dynamic fusion without non-existential constraints, wlas a further extension of
the generalized rule is necessary in the case of a dynamanfusth non-existential
constraints.

Section 7 presents a brief comparison of the rules and opdigons for a future
research. A concluding section follows.

2 Classic definitions

All the classic definitions assume an exhaustive fifitene of discernmen® =
{601, ...,0,}, whose elements are mutually exclusive.

A basic belief assignment (bbas a mappingn : P(©) — [0, 1], such that
> ace m(A) = 1, the values of bba are calldxsic belief masses (bbmijhe value
m(A) is called thebasic belief mass (bbm) ef.! A belief function (BF)s a mapping

Im(0) = 0is often assumed in accordance with Shafer’s definition [A2¢lassic counter example is
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Bel : P(©) — [0,1], bel(A) = > y.xc4m(X), belief function Bel uniquely
corresponds to bba: and vice-versa.P(0) is often denoted also b3®. A focal
elemenis a subsefX of the frame of discernmei®, such thatn(X) > 0. If a focal
element is a one-element subseByfwe are referring to aingleton

Let us start with the classic definition of Dempster’s ribempster’s (conjunctive)
rule of combination® is given as
(m1 ®@m2)(A) = Yx yco xny—a Kmi(X)mg(Y) for A # 0, whereK = 1,
K = Y xyce xny—o M1 (X)ma(Y), and (m1 @ m2)(0) = 0, see [12]; putting
K = 1and(m; @ m2)(?) = x we obtain thenon-normalized conjunctive rule of
combination@, see e. g. [14].

Yager’s rule of combinatio®, see [15], is given as
(m1®m2)(A) =3 v yco. xny=a M1 (X)mz(Y)ford # A C©,
(m1®m2)(@) =m (@)mg(@) + ZX,YQ@, Xny=¢ M (X)mQ(Y),
and(mi®m2)(0) = 0;

Dubois-Prade’s rule of combinatio® is given as
(m1@my)(A) =

xyco, xny=aM(X)ma(Y) + 3 x yco, xny=oxuy=a M1 (X)m2(Y)

for # A C ©, and(mi@ms)(0) = 0, see [9].

3 Introduction to the DSm theory

Because DSmT is a new theory which is in permanent dynamiciéeo, we have to
note that this text is related to its state described by féamand text presented in the
basic publication on DSmT — in the book [13]. Rapid developtref the theory is
demonstrated by announcement of the second book on DSmT.

3.1 Dedekind lattice, basic DSm notions

Dempster-Shafer modified Theory or Dezert-Smarandachery{®SmT) by Dez-
ert and Smarandache [7, 13] allows mutually overlappingnelgs of a frame of
discernment. Thus, a frame of discernment is a finite exhauset of elements
© = {61,02,...,0,}, but not necessarily exclusive in DSmT. As an example, we can
introduce a three-element set of coloiBed, Green, Blue} from the DSmT home-
pagé. DSmT allows that an object can have 2 or 3 colours at the sanee £.g. it
can be both red and blue, or red and green and blue in the sam@gttcorresponds to
a composition of the colours from the 3 basic ones.

DSmT uses basic belief assignments and belief functionaetkfinalogically to
the classic Dempster-Shafer theory (DST), but they are elgfim a so-called hyper-
power set or Dedekind lattice instead of the classic poweofsthie frame of discern-

Smets’ Transferable belief model (TBM) which admits positiv€d) as it assumes: (@) > 0.
2www.gallup.unm.edutsmarandache/DSmT.htm
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ment. To be distinguished from the classic definitions, treycalled generalized basic
belief assignments and generalized basic belief functions

The Dedekind lattice more frequently calledyper-power seD® in DSmT, is
defined as the set of all composite propositions built froem&nts of© with union
and intersection operatorsandn such that), 6, 6-, ...,6,, € D, andifA, B € D®
then alscdU B € D® andAN B € D®, no other elements belong fo° (9, N6, # 0
ingeneralg; N6, =0iff 6, =0 oro; =0).

Thus the hyper-power séd® of © is closed tou andn andé; N 6; # 0 in
general. Whereas the classic powerstof O is closed taJ, N and complement, and
6, N6, = 0 for everyi # j.

Examples of hyper-power sets. L&t = {6;,60,}, we haveD® = {§,0, N
02,01,02,0; U B}, iie. |D®| = 5. Let©® = {fy,602,03} now, we haveD® =
{Oto, aq, ...alg}, WhereOéo = @, a1 = 91ﬁ02ﬂ93, Qg = 01ﬂ02, a3 = 91ﬁ93, ey 17 =
0y U B3, a8 = 61 Uy U b3, i.e.,‘D@| =19 for ‘@‘ = 3.

A generalized basic belief assignment (gbba)s a mappingn : D® — [0, 1],
such that)” .. e m(A) = 1 andm() = 0. The quantitym(A) is called thegen-
eralized basic belief mass (gbbm) 4f A generalized belief function (gBH}el is a
mappingBel : D® — [0, 1], such thatBel(A) = >_xca.xepe M(X), generalized
belief functionBel uniquely corresponds to gbla and vice-versa.

3.2 DSm models

If we assume a Dedekind lattice (hyper-power set) accorttine above definition
without any other assumptions, i.e., all elements of anestze frame of discernment
can mutually overlap themselves, we refer to fitee DSm modeM7 (©), i.e., about
the DSm model free of constraints.

In general it is possible to add exclusivity or non-existntonstraints into DSm

models, we speak abohybrid DSm models such cases.

An exclusivity constraint; N 0, g says that elementy andf, are mutually

exclusive in modelM, whereas both of them can overlap with. If we assume

exclusivity constraint§; N6z "2 0, 6, N 65 "2 0, 6 N O3 "2 (), another exclusivity

constraint directly follows themé; N 6, N 63 22 ). In this case all the elements of
the 3-element frame of discernmedt= {6, 62, 65} are mutually exclusive as in the
classic Dempster-Shafer theory, and we call such hybrid D®el asShafer's model
M°(0).

A non-existential constrairt; "=* brings additional information about a frame
of discernment saying th@ is impossible; it forces all the gbbm of C 63 to be
equal to zero for any gbba in mod#l(5. It represents a sure meta-information with
respect to generalized belief combination which is useddyreamic fusion.

In a degenerated case of ttiegenerated DSm modélly we always haven(()) =
1, m(X) = 0for X # (. Itis the only case where:(()) > 0 is allowed in DSmT.
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The total ignorance o® is the unionl; = 6; U U ... U B,. 0 = {0, 0},
where0 . is the set of all elements d® which are forced to be empty through the
constraints of the modeWt and( is the classic empty sét For a given DSm model

we can define (in addition to [13Pr = {6:10; € ©,0; € D}, Om 4 0, and

. M
IM = UQiE@M 01‘, IeIM = ItIIM - It QGMYIM@ = @

3.3 The DSm rule of combination

Theclassic DSm rule DSm({ defined on the free DSm models as it folléws
me(@)(A) = (m1@mgy)(A) = ZX,YGD@,XmY:A my(X)ma(Y).

SinceD® is closed under operatorsandu and all thens are non-empty, the classic
DSm rule guarantees that; @ms) is a proper generalized basic belief assignment.
The rule is commutative and associative. For n-ary versfaheorule see [13].

When the free DSm mode¥1/ (©) does not hold due to the nature of the problem
under consideration, which requires us to take into acceomte known integrity con-
straints, one has to work with a proper hybrid DSm mo#¢(0) # M/ (0). In such
a case, théaybrid DSm rule of combination DSmbased on the hybrid moddh (©),
MI(O) £ M(O) # My(©), for k > 2 independent sources of information is defined
as:ma (o) (A) = (ml@mg@@mk)(A) = (b(A)[Sl(A) + Sz(A) + Sg(A)}, where
¢(A) is acharacteristic non-emptiness functioha set4, i. e. (A) = 1if A ¢ @ and
#(A) = 0 otherwise.S; = m s (0), S2(A), andSs(A) are defined for two sources
(for n-ary versions see [13]) as it follows:

Si1(A) = Zx,yeDe,XmY:A my (X)ma(Y),

S2(A) = ZX,YG 0, U=A]V[(UE D)N(A=I})] ma (X)ma(Y),

Sg(A) = ZX,YGD@, XUY=A, XnYe @ml(X)mg(Y) withif = U(X) U U(Y), where
u(X) is the union of all singletons; that composeX andY’; all the sets4, X, Y are
supposed to be in some canonical form, e.g. CNF. Unfortiynatemention about the
canonical form is included in [13]5; (A4) corresponds to the classic DSm rule on the
free DSm modelM7 (©); Sy(A) represents the mass of all relatively and absolutely
empty sets in both the input gbbas, which arises due to nimteatial constraints and
is transferred to the total or relative ignorance; #3¢A) transfers the sum of masses
of relatively and absolutely empty sets, which arise as @msfbf the input gbbas, to
the non-empty union of input sets.

The hybrid DSm rule generalizes the classic DSm rule to bécgiye to any DSm
model. The hybrid DSm rule is commutative but not assoaatlv is the reason the
n-ary version of the rule should be used in practical apptioa. For the n-ary version
of S;(A), see [13].

3 @ should be @, extended with the classic empty gktthus more correct should be the expression
0=0pmU {@}
4To distinguish the DSm rule from Dempster’s rule, we @énstead ofp for the DSm rule in this text.
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4 A generalization of Dempster’s rule

Let us assume all elemenis from D® to be in CNF in the rest of this contribution,
unless another form oX is explicitly specified. Let us also assume non-degenerated
hybrid DSm models, i.eQar # 0, Ipg ¢ Opq. Let us denoted = O U {0}, i.e.

set of set of all elements @® which are forced to be empty trough the constraints of
DSm modelM extended with classic empty dkthence we can writ& € @ for all

M .
X = (including.

The classic Dempster’s rule puts belief mass(X)mo(Y) to X N'Y (the rule
adds it to(m1 @ m2)(X N'Y)) whenever it is non-empty, otherwise the mass is nor-
malized. In the free DSm model all the intersections of nompty elements are always
non-empty, thus no normalization is necessary and Denpstde generalized to the
free DSm modelM/(0) coincides with the classic DSm rule(m; @ my)(A) =
> x,vepe, xny=a M(X)mz(Y) = (m1@m2)(A).

Hence, Dempster’s rule generalized to the free DSm modedfiaet] for any couple
of belief functions.

Empty intersections can appear in a general hybrid modetaltree model’s con-
straints, thus the normalization should be used.

Thegeneralized Dempster’s rule of combinatieris given as

(m1 ®ma)(A) = > K my(X)my(Y)
X,YED® XNY=A

for ) # A € DYy, whereK = 12, k = Y« yepe xrye o (X)ma(Y), and
(m1 @ ma)(A) =0 otherwise, i.e., ford = () and for4 ¢ D,.

Similarly to the classic case, the generalized Demsptelesis not defined in fully
contradictive cas&dn hybrid DSm models, i.e. whenever= 1. Specially the gen-
eralized Dempster’s rule is not defined (and it cannot be ddfion the degenerated
DSm modelMy.

To be easily comparable with the DSm rule, we can rewrite #feniion of the
generalized Dempster’s rule to the following equivalentnfo (m; @ ms)(A4) =
H(A)[SP(A) + ST (A) + ST (A)], wherep(A) is acharacteristic non-emptiness func-
tionof asetd, i. e.¢(A) = 1if A ¢ @ andp(A) = 0 otherwise, S (A), S5 (A), and
S (A) are defined by

(A)
ey _ S1(A)
52 (A) = 5, pe ', o BiE) XY e By (Xyma(Y)?
(A)

51 (A
S§B A) = ZzeD@ligl 5.(2) ZX,YED@, Xuyg 0, XnYe O ma(X)ma(Y).

5Note that in a static combination it means a full conflict/cadiction between input BFs. Whereas in the
case of a dynamic combination it could be also a full confliciieetn mutually non-conflictling or partilally
conflicting input BFs and constraints of a used hybrid DSm rhdelg. m1 (61 U62) = 1, ma(62U03) =
1, wherefs is constrained in a used hybrid model.
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S (A) corresponds to a non-conflicting belief mas§,(A) includes all classic
conflicting masses and the cases where on& df is excluded by a non-existential
constraint, ands’ (A) corresponds to the cases where hittandY” are excluded by
(a) non-existential constraint(s).

It is easy verify that the generalized Dempster’s rule ddies with the classic one
on Shafer's modeM", for proof see [6]. Hence, the above definition of the gerieadl
Dempster’s rule is really a generalization of the classimpster’s rule.

5 A generalization of Yager’s rule

The classic Yager's rule puts belief mass(X)m2(Y') to X N'Y whenever it is non-
empty, otherwise the mass is addedt¢0). As all the intersections are non-empty
in the free DSm model, nothing should be addedrtg©)m.(O) and Yager's rule
generalized to the free DSm modet/ (©) also coincides with the classic DSm rule.
(m1®m3)(A) = ZX,YeD(—),me:A my(X)me(Y) = (m1@m2)(A).

The generalized Yager's rule of combinatian for a general hybrid DSm model
M is given as

(m1®mo)(A) = > my(X)ma(Y)
X, YED®, XNY=A

forA¢ 0, O #Ac DY,

(m@m2)(Op) = > mi(X)ma(Y)+ D mi(X)ma(Y)

X,yeD® X,yeD®
XNY =0y XNYe Opq

and(m;®msz)(A) = 0 otherwise, i.e., fod € @ and forA € (D®\ DY,).

To be easily comparable with the DSm rule, we can rewrite #fenition of the
generalized Yager's rule to an equivalent forin; ®m,)(A) = ¢(A)[SP(A) +
SSB(A) + S?(A)], WhereS1®(A), SQ®(A), andS?(A) are defined by
S1®(A) = 51(4) = ZX,YGD@, xny=a M1 (X)m2(Y),

SPOM) = X xye g, m1(X)ma(Y), SP(A) =0for A # O,
SPOM)=x vepo, xuve 0. xnve Op M1 (X)ma2(Y), SP(A)=0for A%O .
Itis easy to verify that the generalized Yager's rule calesiwith the classic one on

Shafer's mode/M°, for proof see [6]. Hence the definition of the generalizedefs
rule is really a generalization of the classic Yager’s rule.

6 A generalization of Dubois-Prade’s rule

The classic Dubois-Prade’s rule puts belief mas$X )ms(Y) to X NY whenever it
is non-empty, otherwise the mass (X)m»(Y) is added taX U Y which is always
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non-empty in the DST.

In the free DSm model all the intersections of non-empty eletsmare always non-
empty, thus nothing to be added to unions and Dubois-Pradie'generalized to the
free modelM/ (©) also coincides with the classic DSm rule.

(m1@m2)(A) = Y x yepe, xny—a M1(X)m2(Y) = (m1@m2)(A).

In the case of a static fusion, only exclusivity constraiats used, thus all the
unions ofX; € D®, X ¢ ( are also out of). Thus we can easily generalize Dubois-
Prade’s rule agm@ms)(A) =
ZX,YGDQ xny=am1(X)ma(Y) + ZX,YGDB, XNYeDa, XUY=A m1(X)ma(Y)
forAc D® A¢ 0, and (mi@my)(A) =0 for A€ 0.

The situation is more complicated in the case of a dynamioffiysvhere non-
existential constraints are used. There are several sgstowX NY € 0 arises,
for detail see [6].

Thus we can now formulate a definition of the generalized [8+Boade rule. We
can distinguish three cases of input generalized beligftians: (i) all inputs satisfy
all the constraints of a hybrid DSm modet (©) which is used (a static belief combi-
nation), (i) inputs do not satisfy the constraints/ef(©) (a dynamic belief combina-
tion), but no non-existential constraint is used, (iii) quately general inputs which do
not satisfy the constraints, and non-existential constsare allowed (a more general
dynamic combination). According to these three cases, wéarenulate three variants
of the generalized Dubois-Prade rule.

Thesimple generalized Dubois-Prade rule of combinatioiis given as

(mi@mg)(A) = Y mi(X)ma(Y) + D mi(X) ma(Y)

XNY=A XNY€EDp
XUY=A

for () # A € DR,, and
(m1@m2)(A) = 0 otherwise, i.e., ford = ) and forA € (D®\ DY,).

Thegeneralized Dubois-Prade rule of combinatienis given as

(mi@my)(A) = > mi(X)ma(Y)+ > mi(X)ma(Y)+ Y mi(X)ma(Y)

XNY=A XNY €D py XUY €0y
XUY=A4 Uxyuy=A

for () # A € DR,, and
(m1@my)(A) = 0 otherwise, i.e., fod = () and forA € (D®\ DY),
whereUxy is disjunctive normal form o U Y with all Ns substituted withus.

Theextended generalized Dubois-Prade rule of combinatids given as

SWe present here 3 variants of the generalized Dubois-Préeldormulas for all of them include several
summations oveX,Y € D©, whereX,Y are more specified with other conditions. To simplify the
formulas in order to increase their readability, we do noeegghe common conditioX, Y € D® in sums
in all the following formulas for the generalized Dubois-@eaule.
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(mi@ms)(A) = Y mi(X)ma(Y) + Y mi(X) ma(Y)

XNYy=A XNY €Dy
XUY=A
+ Y ma(X) ma(Y)
XUY €D
Uxuy =4

for 0 £ A+ O, Ac DY,

(mi@my)(Om) = >, mi(X)ma(Y) + > mi(X) ma(Y)

XNY =0, XNYe 0
XUY =0\
+ Y X)) ma(Y) + > ma(X) ma(Y),
XUY€E O pg Uxuy € Q)M

Uxuy=9m

and (m1@ms)(A) =0 otherwise, i.e., fod € @ and for4 € (D®\ DY),
whereU xyy is disjunctive normal form o U Y with all Ns substituted withus.

Itis easy to verify that the generalized Dubois-Prade ralaaides with the classic
one in Shafer's modeM?, for proof see [6].

The classic Dubois-Prade rule is not associative, neitiergeneralized one is.
Similary to the DSm approach we can easily rewrite the déimstof the (generalized)
Dubois-Prade rule for a combination b&ources.

To be easily comparable with the DSm rule, we can rewrite gfenitions of the
generalized Dubois-Prade rules to an equivalent form amtl that of DSm:

the generalized Dubois-Prade rule:

(m1@ms)(A) = $(A)[SP(A) + SP(A) + S5 (A)], where

S?(A) =51(4) = ZX,YGD@, xny=am(X)ma(Y),

Sé® (A) = ZX,YG@M, Uxuy=A mi (X)m2 (Y)’

5?(14) = ZX,YeD(", XNY eDpy, (XUY)=A U (X)ma(Y).

the simple generalized Dubois-Prade rule:

(m1@ms)(A) = ¢(A)[SP(A) + SP(4)], wheres@(A4), SP(A) as above;
the extended generalized Dubois-Prade rule:

(m1@ms)(A) = ¢(A)[SP(A)+5SP(A)+ 5L (A)], whereSP(A), SP(A) as above,
andS?(A) =2 x,veb, [Uxuy ZAIV[Uxuy EOAA=0 pq] my (X)ma(Y).

For proofs see [6].

7 A brief comparison of the rules

As there are no conflicts in the free DSm modél (©) all the presented rules coincide
in the free DSm modeM/ (©). Thus the following statement holds:
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Statement 1 Dempster’s rule, Yager's rule, Dubois-Prade’s rule, théotigg DSmH
rule, and the classic DSmC rule are all mutually equivalenttie free DSm model
M (0).

Similarly the classic Dubois-Prade rule is equivalent ® BFm rule for Shafer's
model. But in general all the generalized rules», @, and DSm rule are different. A
very slight difference comes in the case of Dubois-Pradéé&s and the DSm rule. A
difference appears only in the case of a dynamic fusion, &/keme focal elements of
both (of all in an n-ary case) the source basic belief assiggmsnare equivalent to the
empty set; an extension of the generalized Dubois-Praddsulecessary there.

Statement 2 (i) If a hybrid DSm modelM (©) does not include any non-existential
constraint or if all the input belief functions satisfy dfleg constraints of\(©), then
the generalized Dubois-Prade rule is equivalent to the D8l in the modeM (©).

(i) The generalized Dubois-Prade rule extended with addiof m, (X)ms(Y) (or
IT; m;(X;) in an n-ary case) tan(©) for X, Y € @ (or for X; € @, in an n-ary
case) is fully equivalent to the hybrid DSmH rule on any hy¥Sm model.

For proofs see [6].

7.1 Open problems

As an open question remains commutativity of a transforwnadif generalized belief
functions to those which satisfy all the constraints of audsgrid DSm model with the
particular combination rules. Such a commutation may &iamtly simplify functions
S, and hence the entire definitions of the corresponding coatioim rules.

Inthe same way as itis used in this paper we can also geretiaiion-normalized
conjunctive rule of combination. A generalization of min@ntbination rule, whose
computing mechanism (not a motivation nor an interpretgtimas a relation to the
conjunctive rules on the free DSm model/ (©) already in its classic case [3], is just
under development [5].

We have to also mention the question of a possible genetializaf condition-
alization, related to particular combination rules to tlwengin of DSm hyper-power
sets.

8 Conclusion

The classic rules for combination of belief functions haeer generalized to be ap-
plicable to hyper-power sets, which are used in DSm thedmg generalization forms

a solid theoretical background for full and objective conmgzan of the nature of the

classic rules with the nature of the DSm rule of combinatlbalso enables us to place
the DSmMT better among the other approaches to belief furtio
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