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Abstract: In this paper a particular combination rule based on specified fuzzy T-
Conorm/T-Norm operators is proposed and analysed - TCN Rule of Combination.
It does not belong to the general Weighted Operator Class. The nice features of
the new rule could be defined as: very easy to implement, satisfying the impact
of neutrality of Vacuous Belief Assignment; commutative, convergent toidempo-
tence, reflecting majority opinion, assuring an adequate data processingin case
of total conflict. Several numerical examples and comparisons with the new ad-
vanced Proportional Conflict Redistribution Rules proposed recently byFlorentin
Smarandache and Jean Dezert within their theory of plausible and paradoxical rea-
soning are presented.
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erators, Dezert-Smarandache theory (DSmT), Proportional Conflict Redistribution
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1 Introduction

There are many combination rules available for informationfusion [5, 8, 7]. No one
of them can satisfy the whole range of requirements, associated with the all possible
applications. In temporal multiple target tracking the main requirements they have to
deal with relate especially to the way of adequate conflict processing/redistribution, the
simplicity of implementation, satisfaction of the impact of neutrality of Vacuous Be-
lief Assignment (VBA), reflection of majority opinion, etc.In this work we propose to
connect the combination rules for information fusion with particular fuzzy operators:
the Conjunctive rule is replaced with fuzzy T-norm operatorand respectively the Dis-
junctive rule with T-conorm operator. These rules take their source from the T-norm
and T-conorm operators in fuzzy logics, where the AND logic operator corresponds in
information fusion to the conjunctive rule and the OR logic operator corresponds to
the disjunctive rule. While the logic operators deal with degrees of truth and false, the
fusion rules deal with degrees of belief of hypotheses. Within this work we will focus
only on the T-norm based Conjunctive rule as an analog of the ordinary conjunctive
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rule of combination. It is because especially the conjunctive rule is appropriate for
identification problems, restricting the set of hypotheseswe are looking for.

2 Fuzzy Inference for Information Fusion

The main purpose of information fusion is to produce reasonably aggregated, refined
and/or completed granule of data obtained from a single or multiple sources with con-
sequent reasoning process. It means, that the main problem here consists in the way
to aggregate correctly these sources of information, whichin general case are impre-
cise, uncertain, or/and conflicting. Actually, there is no asingle, unique rule to deal
simultaneously with such kind of information peculiarities. Something more, there
are a huge number of possible combinational rules, appropriate for a particular only
application conditions. In [6] an unification of fusion theories and a combination of
fusion rules in solving different problems is proposed. Themost appropriate model for
each considered application is selected. Here we will consider the case with a given
Shafer’s model [4, 1]. LetΘ = {θ1, θ2, ...θn} be the frame of discernment for the
problem under consideration, whereθ1, θ2, ...θn are a set of n exhaustive and exclusive
hypotheses. Within the applied model, Dempster-Shafer’s Power Set is described as:
2θ = {∅, θ1, θ2, θ1 ∪ θ2} . The basic belief assignment (bba)m(.) : 2Θ → [0, 1],
associated with a given information granule is defined with:

m (⊘) = 0;
∑

X∈2Θ

m(X) = 1.

Having given two basic belief assignmentsm1(.) andm2(.) and Shafer’s model,
Dempster’s rule of combination [1] appears to be the most frequently used combina-
tion rule. It is defined as:

m12(X) =

∑

Xi ∩ Xj = X

Xi, Xj ∈ 2Θ

m1(Xi) · m2(Xj)

1 −
∑

Xi ∩ Xj = ⊘

Xi, Xj ∈ 2Θ

m1(Xi) · m2(Xj)

The termk =
∑

Xi ∩ Xj = ⊘

Xi, Xj ∈ 2Θ

m1(Xi) · m2(Xj) defines the degree of conflict be-

tween the sources of information. The normalization step (i.e. the division by1 − k)
in Dempster’s rule is definitely the most sensitive and week point of the rule, because
the fused result becomes a proper information granule only in the cases, whenk < 1.
The new advanced Proportional Conflict Redistribution rules, proposed recently by F.
Smarandache and J. Dezert [8], which are particular cases ofthe Weighted Operator
overcome successfully the main limitations of Dempster’s rule.
In this work our goal is to propose a new, alternative combination rule, interpreting the
fusion in terms of fuzzy operators, which avoids the Dempster’s rule weakness, pos-
sesses an adequate behavior in cases of total conflict and hasan easy implementation.
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2.1 The Way of Interpreting the Fusion

We assume the relation between the two basic belief assignments (the information
granules)m1(.) andm2(.) to be considered as a vague relation, characterized with the
following two characteristics:

* The way of association between the focal elements, included in the basic belief
assignments of the sources of information. It is a particular operation chosen
among the operations: union and intersection respectively. These set operations
corresponds to logic operations Conjunction and Disjunction.

* The degree of association (interaction) between the focal elements included in
the basic belief assignments of the sources of information.It is obtained as a T-
norm (for Conjunction) or T-conorm (for Disjunction) operators applied over the
probability masses of corresponding focal elements. Thereare multiple choices
available in order to define T-norm and T-conorm operators.

Within this work, as it is mentioned above, we will focus onlyon the T-norm based
Conjunctive rule, more precisely Minimum T-norm based Conjunctive rule as an ana-
log of the ordinary conjunctive rule of combination. We willdemonstrate that it yields
results very closed to conjunctive rule, satisfying the principle of neutrality of VBA,
reflecting the majority opinion, converging towards idempotence and having adequate
behavior in cases of total conflict presence. It is commutative, simply to apply, but not
associative.

2.2 Main properties of T-Norm Function

TheT −norm : [0, 1]2 7→ [0, 1] is a function defined in fuzzy set/logic theory in order
to represent the intersection between two particular fuzzysets and theAND fuzzy log-
ical operator respectively. If one extends T-norm to the data fusion theory, it will be a
substitute for the conjunctive rule. The T-norm has to satisfy the following conditions:

* Associativity:Tnorm(Tnorm(x, y), z) = Tnorm(x, Tnorm(y, z))

* Commutativity:Tnorm(x, y) = Tnorm(y, x)

* Monotonicity: if (x ≤ a)&(y ≤ b) then Tnorm(x, y) ≤ Tnorm(a, b)

* Boundary Conditions:Tnorm(0, 0) = 0; Tnorm(x, 1) = x

2.3 Functions satisfying theT- normconditions

There are many functions which satisfy the T-norm conditions:

* Zadeh’s (default) min operator [3]:m(X) = min {m1(Xi),m2(Xj)}
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* Algebraic product operator:m(X) = m1(Xi) · m2(Xj)

* Bounded product operator:m(X) = max {[m1(Xi) + m2(Xj)] , 0}

We are interested the chosen T-norm operator to satisfy the neutrality of VBA. From the
described above functions, the default (min) and the algebraic product operator satisfy
this condition. Taking it in mind we choose the default Minimum T-norm operator in
order to define the degree of associations between the focal elements of information
granules.

2.4 Proving of the Vague min Set Operator

The intersectionXi ∩ Xj for crisp (ordinary) subsets of the universeU includes all of
the elements inXi andXj :

m(X) = 1, if X ∈ Xi and X ∈ Xj

m(X) = 0, if X /∈ Xi or X /∈ Xj

Let Xi andXj are some vague subsets ofU . What do mean the conditions from
above for the case of intersectionXi ∩ Xj :

* First conditionX ∈ Xi and X ∈ Xj

It means that the following case exists:{m(X ∈ Xi) = 1,m(X ∈ Xj) = 1} ,
for which: min {m(X ∈ Xi),m(X ∈ Xj)} = 1

* Second conditionX /∈ Xi or X /∈ Xj

It means that one of the following cases exist:

{m(X ∈ Xi) = 0,m(X ∈ Xj) = 0} or
{m(X ∈ Xi) = 1,m(X ∈ Xj) = 0} or
{m(X ∈ Xi) = 0,m(X ∈ Xj) = 1}

for which: min {m(X ∈ Xi),m(X ∈ Xj)} = 0
From these it follows thatmin {m(X ∈ Xi),m(X ∈ Xj)} provides the correct ex-
pression for intersection.

3 The T-conorm/T-norm (TCN) Rule of Combination

Let’s take a look at a general form of a fusion Table 1, where the T-norm based inter-
pretation of the ordinary conjunctive rule of combination is considered for two given
sources. The frame of the fusion problem under consideration isΘ = {θ1, θ2} and the
power set is:2θ = {∅, θ1, θ2, θ1 ∪ θ2}. The two basic belief assignments (sources of
information)m1(.) andm2(.) are defined over2Θ. It is assumed thatm1(.) andm2(.)
are normalized bbas (m (⊘) = 0;

∑

X∈2Θ m(X) = 1).
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Step 1: Defining the min T-norm conjunctive consensus:
The min T-norm conjunctive consensus is based on the defaultmin T-norm function.
The way of association between the focal elements of the given two sources of infor-
mation is defined asX = Xi ∩ Xj , and the degree of association is as follows:

m̃(X) = min {m1(Xi),m2(Xj)} ,

wherem̃(X) represents1 the mass of belief associated to the given propositionX by
using T-Norm based conjunctive rule .

m2(θ1) m2(θ2) m2(θ1 ∪ θ2)

m1(θ1) θ1 ∩ θ1 = θ1 θ1 ∩ θ2 θ1 ∩ (θ1 ∪ θ2) = θ1

m̃(θ1) = m̃(θ1 ∩ θ2) = m̃(θ1) =
min {m1(θ1), m2(θ1)} min {m1(θ1), m2(θ2)} min {m1(θ1), m2(θ1 ∪ θ2)}

m1(θ2) (θ1 ∩ θ2) θ2 ∩ θ2 = θ2 θ2 ∩ (θ1 ∪ θ2) = θ2

m̃(θ1 ∩ θ2) = m̃(θ2) = m̃(θ2) =
min {m1(θ2), m2(θ1)} min {m1(θ2), m2(θ2)} min {m1(θ2), m2(θ1 ∪ θ2)}

m1(θ1 ∪ θ2) (θ1 ∪ θ2) ∩ θ1 = θ1 (θ1 ∪ θ2) ∩ θ2 = θ2 (θ1 ∪ θ2) ∩ (θ1 ∪ θ2) = θ1 ∪ θ2

m̃(θ1) = m̃(θ2) = m̃(θ1 ∪ θ2) =
min {m1(θ1 ∪ θ2), m2(θ1)} min {m1(θ1 ∪ θ2), m2(θ2)} min {m1(θ1 ∪ θ2), m2(θ1 ∪ θ2)}

Table 1:Min T-norm based Interpretation of Conjunctive Rule

The proposed T-conorm/T-norm based Combination rule, called by the authors
TCN rule of combination, in Dempster Shafer Theory framework is defined for∀X ∈
2Θ by the equation:

m̃(X) =
∑

Xi ∩ Xj = X

Xi, Xj ∈ 2Θ

min {m1(Xi),m2(Xj)} (1)

Step 2: Distribution of the mass, assigned to the conflict

The distribution of the mass, assigned to the conflict follows in some degree the
distribution of conflicting mass in DSmT Proportional Conflict Redistribution Rule 2
[8], but the procedure here is based on fuzzy operators. Let us denote the two bbas,
associated with the information sources in a matrix form:

[

m1(.)
m2(.)

]

=

[

m1(θ1) m1(θ2) m1(θ1 ∪ θ2)
m2(θ1) m2(θ2) m2(θ1 ∪ θ2)

]

The total conflicting mass is distributed to all non-empty sets proportionally with re-
spect to themaximum, (denoted here asx12(X)) between the elements of correspond-
ing mass matrix’s columns, associated with the elementX of the power set. It means

1We introduce in this paper the over-tilded notation for masses to specify that the masses of belief are
obtained with fuzzy T-norm and T-conorm operators.
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the bigger mass is redistributed towards the element, involved in the conflict and con-
tributing to the conflict with the maximum specified probability mass. The fuzzy op-
eratormaximumis used in order to interpret the summation of correspondingmass
matrix’s columns, associated with the elementX of the power set, as used in DSmT
Proportional Conflict Redistribution Rules.

x12(θ1)
x12(θ2)

= max(m1(θ1),m2(θ1))
= max(m1(θ2),m2(θ2))

One denotes byr(θ1) andr(θ2) the part of conflicting mass, distributed to the propo-
sitionsθ1 andθ2 . Then one has:

r(θ1)

x12(θ1)
=

r(θ2)

x12(θ2)
=

r(θ1) + r(θ2)

x12(θ1) + x12(θ2)
=

k12

s12

Then, the conflicting masses that have to be redistributed are:

r(θ1) = x12(θ1) ·
k12

s12
; r(θ2) = x12(θ2) ·

k12

s12
.

Finally the bba obtained as a result of the applied TCN rule with fuzzy based Pro-
portional Conflict Redistribution Rule 2 , denoted here asm̃PCR2(.) becomes:

m̃PCR2(θ1) = m̃(θ1) + x12(θ1) ·
k12

s12

m̃PCR2(θ2) = m̃(θ2) + x12(θ2) ·
k12

s12

m̃PCR2(θ1 ∪ θ2) = m̃(θ1 ∪ θ2),

wherek12 is the total conflict;

x12(X) = max
i=1,2

(mi(X)) 6= 0

ands12 is the sum of all non-zero maximum values of column’s masses,assigned to
non-empty sets. The conflict mass is redistributed only to the propositions, involved in
the conflict.

Step 3: Normalization of the result:The final step of the TCN rule concerns the
normalization procedure:

m̃PCR2(X) =
m̃PCR2(X)

∑

X 6= ⊘

X ∈ 2Θ
m̃PCR2(X)
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4 Implementation of the TCN Rule of Combination

4.1 Example 1

Let’s have the frame of the problemθ = {θ1, θ2} and two independent sources of
information with basic belief assignments, as follows:

m1(θ1) = 0.6 m1(θ2) = 0.2 m1(θ1 ∪ θ2) = 0.2

m2(θ1) = 0.4 m2(θ2) = 0.5 m5(θ1 ∪ θ2) = 0.1

The min T-norm based conjunctive consensus yields here (Table 2):

m2(θ1) = 0.4 m2(θ2) = 0.5 m2(θ1 ∪ θ2) = 0.1

m1(θ1) = 0.6 m̃(θ1) = m̃(θ1 ∩ θ2) = m̃(θ1) =
min(0.6, 0.4) = 0.4 min(0.6, 0.5) = 0.5 min(0.6, 0.1) = 0.1

m1(θ2) = 0.2 m̃(θ1 ∩ θ2) = m̃(θ2) = m̃(θ2) =
min(0.2, 0.4) = 0.2 min(0.2, 0.5) = 0.2 min(0.2, 0.1) = 0.1

m1(θ1 ∪ θ2) = 0.2 m̃(θ1) = m̃(θ2) = m̃(θ1 ∪ θ2) =
min(0.2, 0.4) = 0.2 min(0.2, 0.5) = 0.2 min(0.2, 0.1) = 0.1

Table 2: Min T-norm based Interpretation of Conjunctive Rule

4.1.1 Fusion with TCN Rule of Combination

Step 1: Obtaining min T-norm Conjunctive Consensus

Using Table 2 and applying equation 1, the fusion result becomes:

m̃(θ1) = 0.4 + 0.2 + 0.1 = 0.7

m̃(θ2) = 0.2 + 0.1 + 0.2 = 0.5

m̃(θ1 ∩ θ2) = 0.5 + 0.2 = 0.7

m̃(θ1 ∪ θ2) = 0.1

Step 2: Redistribution of the conflict by using fuzzy based PCR2

r(θ1)

max(m1(θ1), (m2(θ1))
=

r(θ2)

max(m1(θ2), (m2(θ2))
=

r(θ1)

max(0.6, 0.4)
=

r(θ2)

max(0.2, 0.5)
=
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r(θ1) + r(θ2)

max(0.6, 0.4) + max(0.2, 0.5)
=

m̃(θ1 ∩ θ2)

0.6 + 0.5
=

0.7

1.1
= 0.636

r(θ1) = 0.6 · 0.636 = 0.3816; r(θ2) = 0.5 · 0.636 = 0.318;

Then, after the conflict redistribution, the new masses become:

m̃PCR2(.) = { m̃PCR2(θ1) = 0.7 + 0.3816 = 1.0816;

m̃PCR2(θ2) = 0.5 + 0.318 = 0.818,

m̃PCR2(θ1 ∪ θ2) = 0.1}

Step 3: Normalization of the result
After the normalization procedure one gets the final information granule, as fol-

lows:

m̃PCR2(.) = { m̃PCR2(θ1) = 0.54, m̃PCR2(θ2) = 0.41, m̃PCR2(θ1 ∪ θ2) = 0.05}

4.1.2 Fusion with Ordinary Conjunctive Rule
The conjunctive consensus here is given by:

m(θ1) = 0.38,m(θ2) = 0.22,m(θ1 ∩ θ2) = k = 0.38 m(θ1 ∪ θ2) = 0.02

The PCR2 rule [7, 8] is used in order to redistribute the obtained conflict:

x

0.4 + 0.6
=

y

0.5 + 0.2
=

x + y

1.7
=

0.38

1.7
= 0.224

Then, the final masses of belief become:

mPCR2(θ1) = 0.38 + 1.0 · 0.224 = 0.604

mPCR2(θ2) = 0.22 + 0.7 · 0.224 = 0.376

mPCR2(θ1 ∪ θ2) = 0.02

Ordinary Conjunctive Rule with PCR2 TCN Rule with fuzzy based PCR2

mP CR2(θ1) = 0.604 m̃P CR2(θ1) = 0.54

mP CR2(θ2) = 0.376 m̃P CR2(θ1) = 0.41

mP CR2(θ1 ∪ θ2) = 0.02 m̃P CR2(θ1 ∪ θ2) = 0.05

Table 3: Comparative Results

In the Table 3 there are given comparative results obtained by using ordinary conjunc-
tive rule with PCR2 redistribution of conflicting mass and TCN rule with fuzzy based
PCR2.
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4.2 Zadeh’s Example

Let’s haveθ = {θ1, θ2, θ3} and two independent sources of information with the cor-
responding bbas [9, 10]:

m1(θ1) = 0.99 m1(θ2) = 0.0 m1(θ3) = 0.01
m2(θ1) = 0.0 m2(θ2) = 0.99 m2(θ3) = 0.01

4.2.1 Fusion with TCN Rule of Combination
Here the min T-norm based conjunctive consensus yield the following result:

m̃(θ3) = 0.01; m̃(θ1 ∩ θ2) = 0.99; m̃(θ1 ∩ θ3) = 0.01; m̃(θ2 ∩ θ3) = 0.01;

The partial conflicting masses will be redistributed to corresponding non-empty sets,
contributing to the particular partial conflicts by using fuzzy based PCR3. According
to m̃(θ1 ∩ θ2) = 0.99 :

x1

max(0, 0.99)
=

y1

max(0, 0.99)
=

x1 + y1

1.98
=

0.99

1.98
= 0.5

x1 = 0.99 · 0.5 = 0.495; y1 = 0.99 · 0.5 = 0.495

According tom̃(θ1 ∩ θ3) = 0.01 :

x2

max(0, 0.99)
=

z1

max(0.01, 0.01)
=

x2 + z1

1.0
=

0.01

1.0
= 0.01

x2 = 0.99 · 0.01 = 0.0099; z1 = 0.01 · 0.01 = 0.0001

According tom̃(θ2 ∩ θ3) = 0.01 :

y2

max(0, 0.99)
=

z2

max(0.01, 0.01)
=

y2 + z2

1.0
=

0.01

1.0
= 0.01

y2 = 0.99 · 0.01 = 0.0099; z2 = 0.01 · 0.01 = 0.0001

After the conflict redistribution by using fuzzy based PCR3,the result obtained
becomes:

m̃PCR3(θ1) = m̃(θ1) + x1 + x2 = 0 + 0.495 + 0.0099 = 0.5049

m̃PCR3(θ2) = m̃(θ2) + y1 + y2 = 0 + 0.495 + 0.0099 = 0.5049

m̃PCR3(θ3) = m̃(θ3) + z1 + z2 = 0.01 + 0.0001 + 0.0001 = 0.0102

The normalization leads to the following final result:

m̃PCR3(.) = {m̃PCR3(θ1) = 0.495, m̃PCR3(θ2) = 0.495, m̃PCR3(θ3) = 0.01}
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4.2.2 Fusion with Ordinary Conjunctive Rule
The conjunctive consensus is given by:

m(θ3) = 0.0001; m(θ1∩θ2) = 0.98; m(θ1∩θ3) = 0.0099; m(θ2∩θ3) = 0.0099

Applying PCR3 [7, 8] rule to the partial conflicting masses, one gets:
According tom(θ1 ∩ θ2) = 0.98 :

x1

0.99 + 0.0
=

y1

0.99 + 0.0
=

x1 + y1

1.98
=

0.98

1.98
= 0.495

According tom(θ1 ∩ θ3) = 0.0099 :

x2

0.99
=

z1

0.02
=

x2 + z1

1.01
=

0.0099

1.01
= 0.0098

According tom(θ2 ∩ θ3) = 0.0099 :

y2

0.99
=

z2

0.02
=

y2 + z2

1.01
=

0.0099

1.01
= 0.0098

Finally, the result is given by:

mPCR3(θ1) = 0 + (0.99 · 0.495) + (0.99 · 0.0098) = 0.49975

mPCR3(θ2) = 0 + (0.99 · 0.495) + (0.99 · 0.0098) = 0.49975

mPCR3(θ3) = 0.0001 + (0.02 · 0.0098) + (0.02 · 0.0098) = 0.0005

The comparative results are given in the Table 4.

Ordinary Conjunctive Rule with PCR3 TCN Rule with fuzzy based PCR3

mP CR3(θ1) = 0.49975 m̃P CR3(θ1) = 0.495

mP CR3(θ2) = 0.49975 m̃P CR3(θ2) = 0.495

mP CR3(θ3) = 0.0005 m̃P CR3(θ3) = 0.01

Table 4: Comparative Results
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4.3 Total Conflict Example

Let’s consider a case with the frame of the problemθ = {θ1, θ2, θ3, θ4} and two inde-
pendent sources of information:

m1(θ1) = 0.3 m1(θ2) = 0.0 m1(θ3) = 0.7 m1(θ4) = 0.0

m2(θ1) = 0.0 m2(θ2) = 0.4 m2(θ3) = 0.0 m2(θ4) = 0.6

4.3.1 Fusion with TCN Rule of Combination
Here the min T-norm conjunctive consensus yield the following result:

m̃(θ1 ∩ θ2) = 0.3; m̃(θ1 ∩ θ4) = 0.3; m̃(θ2 ∩ θ3) = 0.4; m̃(θ3 ∩ θ4) = 0.6;

Here one obtains the partial conflicting masses that will be redistributed by using fuzzy
base PCR3.
According to the partial conflict̃m(θ1 ∩ θ2) = 0.3 :

x1

max(0, 0.3)
=

y1

max(0, 0.4)
=

x1 + y1

0.7
=

0.3

0.7
= 0.4285

According to the partial conflict̃m(θ1 ∩ θ4) = 0.3 :

x2

max(0, 0.3)
=

h1

max(0, 0.6)
=

x2 + h1

0.9
=

0.3

0.9
= 0.3333

According to the partial conflict̃m(θ2 ∩ θ3) = 0.4 :

y2

max(0, 0.4)
=

z1

max(0, 0.7)
=

y2 + z1

1.1
=

0.4

1.1
= 0.3636

According to the partial conflict̃m(θ3 ∩ θ4) = 0.6 :

z2

max(0, 0.7)
=

h2

max(0, 0.6)
=

z2 + h2

1.3
=

0.6

1.3
= 0.4615

After the conflict redistribution, the result is given by:

m̃PCR3(θ1) = 0.2275; m̃PCR3(θ2) = 0.3168;

m̃PCR3(θ3) = 0.5775; m̃PCR3(θ4) = 0.4768;

The normalization procedure yields the following final result:

m̃PCR3(θ1) = 0.1423, m̃PCR3(θ2) = 0.1982,

m̃PCR3(θ3) = 0.3612, m̃PCR3(θ4) = 0.2983.

4.3.2 Fusion with Ordinary Conjunctive Rule
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The conjunctive consensus is given by:

m(θ1 ∩ θ2) = 0.12; m(θ1 ∩ θ4) = 0.18; m(θ2 ∩ θ3) = 0.28; m(θ3 ∩ θ4) = 0.42

After applying PCR3 rule to the partial conflicting masses, finally one gets:

mPCR3(θ1) = 0.111; mPCR3(θ2) = 0.171;

mPCR3(θ3) = 0.404; mPCR3(θ4) = 0.314;

The comparative results are given in the Table 5.

Ordinary Conjunctive Rule with PCR3 TCN Rule with fuzzy based PCR3

mP CR3(θ1) = 0.111 m̃P CR3(θ1) = 0.1423

mP CR3(θ2) = 0.171 m̃P CR3(θ2) = 0.1982

mP CR3(θ3) = 0.404 m̃P CR3(θ3) = 0.3612

mP CR3(θ4) = 0.314 m̃P CR3(θ4) = 0.2983

Table 5: Comparative Results

4.4 Example 5 (convergence to idempotence)

Let’s consider a case with the frame of the problemθ = {θ1, θ2} and two independent
sources of information:

m1(.) = {m1(θ1) = 0.7; m1(θ2) = 0.3}

m2(.) = {m2(θ1) = 0.7; m2(θ2) = 0.3}

4.4.1 Fusion with TCN Rule of Combination
Here the min T-norm conjunctive consensus yield the following result:

m̃(.) = {m̃(θ1) = 0.7; m̃(θ2) = 0.3; m̃(θ1 ∩ θ2) = 0.6; }

After the conflict redistribution by using fuzzy based PCR2 one gets:

x

max(0.7, 0.7)
=

y

max(0.3, 0.3)
=

0.6

1.0
= 0.6

m̃PCR2(θ1) = 1.12; m̃PCR2(θ2) = 0.48;
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After normalization the final fused result becomes:

m̃PCR2(.) = {m̃PCR2(θ1) = 0.7; m̃PCR2(θ2) = 0.3; }

4.4.2 Fusion with Ordinary Conjunctive Rule
The conjunctive consensus is given by:

m(θ1) = 0.49; m(θ2) = 0.09; m(θ1 ∩ θ2) = 0.42;

Finally, the vector of belief masses, after applying the PCR2 rule to the partial
conflicting mass becomes:

mPCR2(θ1) = 0.784; mPCR2(θ2) = 0.216

The comparative results are given in the Table 6.

Ordinary Conjunctive Rule with PCR2 TCN Rule with fuzzy based PCR2

mP CR2(θ1) = 0.784 m̃P CR2(θ1) = 0.7

mP CR2(θ2) = 0.216 m̃P CR2(θ2) = 0.3

Table 6: Comparative Results

It is evident, the fusion results obtained by using TCN Rule of combination con-
verges strongly towards idempotence.

4.5 Example 6 (majority opinion)

Let’s consider a case with the frame of the problemθ = {θ1, θ2} and two independent
sources of information:

m1(.) = {m1(θ1) = 0.8; m1(θ2) = 0.2}

m2(.) = {m2(θ1) = 0.3; m2(θ2) = 0.7}

Assume that in the next time moment a third source of information is introduced
with the following bba:

m3(.) = {m3(θ1) = 0.3; m3(θ2) = 0.7}

4.5.1 Fusion with TCN Rule of Combination
The TCN rule with fuzzy based PCR2 yield the following normalized fusion result:

m̃12PCR2(θ1) = 0.557; m̃12PCR2(θ2) = 0.443



90 A New Class of Fusion Rules based on T-Conorm and T-Norm Fuzzy Operators

Let’s now combinẽm12PCR2(.) with the gbba of the third sourcem3(.). Then the final
fused result is obtained:

m̃12,3PCR2(θ1) = 0.417; m̃12,3PCR2(θ2) = 0.583

From this result it is evident, that the final bbam̃12,3PCR2(.) = [0.417 0.583] starts to
reflect the majority opinion, it means thatm̃12,3PCR2(θ1) < m̃12,3PCR2(θ2). If fourth
source is considered with a probability mass vector, supporting the majority opinion,
i.e. m4(.) = {m4(θ1) = 0.3; m4(θ2) = 0.7}, then the final probability mass vector
becomes:

m̃(12,3),4PCR2(θ1) = 0.348; m̃(12,3),4PCR2(θ2) = 0.652;

The new fused vector̃m(12,3),4PCR2(.) = [0.348 0.652] reflects again the major-
ity opinion, sincem̃(12,3),4PCR2(θ1) decreases more and more and in the same time
m̃(12,3),4PCR2(θ2) increases in the same manner.

4.5.2 Fusion with Ordinary Conjunctive Rule
The conjunctive consensus between sources 1 and 2 is given by:

m12(.) = {m12(θ1) = 0.24; m12(θ2) = 0.14; m12(θ1 ∩ θ2) = 0.62}

After applying the PCR2 rule to the partial conflicting massm12(θ1 ∩ θ2) = 0.62 , the
final probability mass vector becomes:

m12PCR2(θ1) = 0.58; m12PCR2(θ2) = 0.42;

Let’s now combinem12PCR2(.) with the bba of the third sourcem3(.) :
Then, after applying PCR2 to the obtained conjunctive consensus, the final proba-

bility mass vector becomes:

m12,3PCR2(θ1) = 0.408; m12,3PCR2(θ2) = 0.592;

From this result it is evident, that the final bbam12,3PCR2(.) = [0.408 0.592] starts
to reflect the majority opinion, it means thatm12,3PCR2(θ1) < m12,3PCR2(θ2). If
fourth source is considered with a probability mass vector,supporting the majority
opinion, i.e. m4(.) = {m4(θ1) = 0.3; m4(θ2) = 0.7}, the final probability mass
vector becomes:

m(12,3),4PCR2(θ1) = 0.286; m(12,3),4PCR2(θ2) = 0.714;

The new fused vectorm(12,3),4PCR2(.) = [0.286 0.714] reflects the majority
opinion, sincem(12,3),4PCR2(θ1) decreases more and more and in the same time
m(12,3),4PCR2(θ2) increases in the same manner.

The comparative results are given in the Table 7.
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Ordinary Conjunctive Rule with PCR2 TCN Rule with fuzzy based PCR2

m(12,3),4P CR2(θ1) = 0.286 m̃(12,3),4P CR2(θ1) = 0.348

m(12,3),4P CR2(θ2) = 0.714 m̃(12,3),4P CR2(θ2) = 0.652

Table 7: Comparative Results

The new TCN combination rule with fuzzy based PCR2 reflects the majority opin-
ion slowly than PCR2.

4.6 Example 7 (neutrality of VBA)

Let’s consider a case with the frame of the problemθ = {θ1, θ2} and two independent
sources of information:

m1(.) = {m1(θ1) = 0.4; m1(θ2) = 0.5 m1(θ1 ∪ θ2) = 0.1}

m2(.) = {m2(θ1) = 0.0; m2(θ2) = 0.0 m2(θ1 ∪ θ2) = 1.0}

The second source is characterized with vacuous gbba.
The TCN rule yields the following result:

m̃(.) = {m̃(θ1) = 0.4; m̃(θ2) = 0.5; m̃(θ1 ∪ θ2) = 0.1}

From the result obtained, it is evident that TCN rule satisfies the principle of
neutrality of the vacuous belief assignment (VBA). The min T-norm operator will
yield always a result, which is equal to the non-vacuous bbam1(.), because what-
ever it is, the probability masses, assigned to its corresponding propositions will be
always lower or equal than the probability mass, assigned tothe full ignorance in
m2(.) = m2(θ1 ∪ θ2) = 1.0. It means that, according to the way of obtaining the
degree of association between the focal elements inm1(.), and m2(.), (m̃(X) =
min {m1(Xi),m2(Xj)}), the resulting bba will become equal to the non-vacuous
m1(.) .

4.7 Main properties of TCN Rule of Combination

Although TCN Rule is not associative (like most of fusion rules but Dempster’s rule
and conjunctive rule on free-DSm model), it presents the following advantages:

* The rule is simple and very easy to implement;

* It reflects the majority opinion;
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* The rule is convergent toward idempotence in cases when there are no intersec-
tions and unions between the elementary hypotheses;

* It reflects the effect of neutrality of vacuous belief assignment;

* It leads to an adequate solutions in case of total conflict between the sources of
information

5 Conclusions

In this paper a particular combination rule (TCN rule of combination) based on fuzzy
T-conorm/T-norm operators is proposed and analysed. It does not belong to the general
Weigthed Operator Class. It overcomes the main limitationsof Dempster’s rule related
to the normalization in case of high conflict and yielding counter-intuitive fusion re-
sults. The nice features of the new rule could be defined as: very easy to implement,
satisfying the impact of neutral Vacuous Belief Assignment; commutative, convergent
to idempotence, reflects majority opinion, assures adequate data processing in case of
partial and total conflict between the information granules. It is appropriate for the
needs of temporal multiple target tracking. The general drawback of this rule is re-
lated to the lack of associativity, which is not a main issue in temporal data fusion
applications, as those involved in target type tracking [2]and classification.
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