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FUZZY LOGIC APPROACH TO ESTIMATING
TENDENCIESIN TARGET BEHAVIOR

Albena TCHAMOVA and Tzvetan SEMERDJIEV

1. Introduction

Angle-only tracking systems based on passive sensors are poorly developed due to a
number of complications. They receive signals transmitted from other emitters and
tend to be less precise than those based on active sensors. However, one important
advantage is their vitality of being stealth. In general, passive sensors make only line-
of-sight angle detection. In the single sensor case that means that we know only direc-
tion of the target as an axis, but the true target position and behavior (approaching or
descending) remain unknown. The problem of determining an objects’ position with-
out using measurements of the distance to it concerns moving platform applications,
astronomy and some military situations, where it is important to estimate the position
(respectively the distance to the object) and, in particular, the behavior of moving tar-
gets. In military avionics, for example, some fighter defending against a raid may wish
to launch a missile as a counteraction to the enemy, but it could not do this until the
position and the behavior of the opposing target are not known. In such situations,
the uncertainty with respect to the opposite target behavior requires to compensate the
missing range by utilizing the extracted from the received emitter’s signal attributes.
This information can be used to assess tendencies in target’'s behavior and its location
and, consequently, to improve the overall angle-only tracking performance.

The objective of this work is to present an approach for target behavior tendency esti-
mation, based on the application of the principles of fuzzy logic to conventional passive
radars. It utilizes the measured emitter’'s amplitude values in consecutive time moments
and uses a set of particular filters design with respective set of possible target behavior
models. In real world situations, fuzzy logic provides an approximate but consistent
solutions to complex engineering problems, where numerical data usually are noisy
and incomplete, and the linguistic information is imprecise and vague. Compared to
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other methods such as Bayesian and Evidential Reasoning, Fuzzy Logic shows some
important advantages: it is suitable and well adapted to use uncertain data and it is a
much more expressive tool for codification of expert knowledge; measurement errors
are explicitly taken into account; it entails modest computational load and provides
decisions in a simple and robust way.

2. Statement of the Problem

In order to track targets using passive sensors it is hecessary to compensate the un-
known ranges by using additional information received from the emitter. In our case,
we assume that the observed target emits constant signal. It is received by the sensor
with a non-constant, but a varying strength (referred to as amplitude). The augmented
measurement vector at the end of each time intéeval 1,2,...i1s Z = {Zo, Z4},

where: Zg denotes the measured local angle with zero-mean Gaussiamnngised

Z o = A + v, denotes corresponding amplitude value with zero-mean Gaussian noise
va = N(O, o,,) and covariance,, . The variation of the amplitude value is caused

by the cluttered environment and the varying unknown distance to the object. Itis con-
ditioned by possible modes of target behavior (approaching or descending). Our goal
is to utilize received amplitude feature measurements for predicting and estimating the
tendency of target behavior.

The block diagram of target behavior tracking system is shown on Figure 1. Two
single-model-based filters running in parallel and using two models for target behavior
(Approaching and Receding) are maintained. At the initial momet the target is
characterized by the fuzzified amplitude state estimates according to the two models
AAPP(k/k) and ARe(k/k). The new observation at time+ 1 is assumed to be the

true value, corrupted by additive measurement noise. It is fuzzified according to the
chosen fuzzification interface.

In order to reduce the influence of measurement noise, a weighting procedure is de-
veloped and applied. Particular tendency prediction and updating methods are used
to estimate present and future target behavior. In general, this diagram resembles the
commonly used approaches in standard tracking systeénihe peculiarity is the im-
plemented fuzzy logic approactt-® in the realization of the main steps of the proce-
dure.

3. Basic Elements of Fuzzy L ogic Systems

In order to resolve the stated problem we apply fuzzy logic as a framework for si-
multaneous processing and handling of numerical and linguistic data to obtain consis-
tent representation of target behavior in a timely manner. Fuzzy systems differ from
classical mathematical-model ones. They do not require strong mathematical models
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Figure 1: Block diagram of target’s behavior tracking system

of functional dependency between system’s input and output. Mathematical models
of system states and measurement processes restrict the range of real-world applica-
tions, because of difficulties in the incorporation of nonmathematical knowledge. Ba-
sically, fuzzy logic systemg consist of a set of fuzzy associative memory rules or
(input,output) associations, operating in parallel, to various degrees. Fuzzy logic sys-
tems transform crisp or fuzzy set inputs into a crisp or fuzzy-set output. Further in this
section we describe the basic elements in fuzzy reasoning: fuzzy sets, fuzzification
interface, fuzzy knowledge base, inference engine and identification of fuzzy models.

3.1. Fuzzy Sets

Fuzziness is a condition, which relates to classes whose boundaries are unsharply de-
fined. A fuzzy setF' is a generalization of an ordinary set by allowing a degree of
membership for each element. It is defined on a universe of discbur3ée mem-
bership functionu r(z) provides a measure of degree of similarity of an element in

to the fuzzy subset and takes its values in the interval [0,1]. Each fuzzy set represents a
linguistic value of some linguistic variable. It is defined as a variable whose values are
sentences in a natural language. The determination of fuzzy membership functions is
the most important issue in applying fuzzy system approach to engineering problems.
No common approach is available for determining these functions. In some cases, they
are attained subjectively as a model for human concepts. In other cases, they are based
on statistical or/and empirical distributions, on heuristic determination, on reliability
with respect to some particular problem, or on theoretical demands. In any case, the
definition of membership functions is not arbitrary.
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3.2. Fuzzfication I nterface

Fuzzification refers to replacing a crisp set with a set whose boundaries are fuzzy. It
transforms each numerical measurement received from a sensor into fuzzy set accord-
ing to the a priori defined fuzzy partition of input space - the fraineThis frame
comprises all considered linguistic values related to particular important input vari-
ables and their membership functions. It is well knownhat much of the evidence

on which human decisions are based is fuzzy. Because of that fact, the fuzzification
of numerical sensory data needs dividing an optimal membership into a suitable num-
ber of fuzzy sets. Such division provides smooth transitions and overlaps among the
associated fuzzy sets according to the particular real world situation.

3.3. Fuzzy Knowledge Base

Fuzzy IF-THEN rules provide a methodology to represent some objective and/or hu-
man knowledge. From this point of view, each fuzzy rule is a scheme for capturing
knowledge that involves imprecision. The principle feature of fuzzy rule-based rea-
soning is its partial matching capability. It makes possible an inference to be made
from a fuzzy rule even when the rule’s condition is partially satisfied. Fuzzy mapping
rules describe a functional mapping relationship between inputs (antecedents) and out-
put (consequent) using linguistic terms.

The foundation of fuzzy mapping rules is a fuzzy grapkhich is an union of Carte-

sian products involving linguistic input-output associations. It is described by a set of
1 number fuzzy rules in the form of: 'Ik is A; THEN y is B; '. This is expressed
mathematically as:

9=J4i x B, @)

where A and B are the linguistic values, describing input and output variables. The
Cartesian product of andB is defined as:

paxp(u,v) = pa(u) @ pp(v), @)

where® denotes a fuzzy conjunction (t-norm) operajor « 5 (u, v) is @ membership
function, which measures the degree of truth of the implication relation between cor-
responding antecedents and consequents.

3.4. Fuzzy Inference Engine

Fuzzy mapping rules are designed as a group. The inference of such a collection is
based on compositional rule of inference:

B'=A'og=Ao| JA; x B;. (3)

K3
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Hereg represents the fuzzy graph of a given fuzzy model and the opera®enotes
the rule. It is not uniquely defined. By choosing different fuzzy conjunction and dis-
junction operators, one can get different representations.

3.5. Fuzzy Model | dentification

A set of fuzzy mapping rules forms a fuzzy model. Depending on the choice of aggre-
gation operator at the outputs of the fuzzy rules, fuzzy models can be classified into
two categories: nonadditive and additive ones. The first group aggregates the outputs
of fuzzy rules using the maximum operator, while the second uses an additive operator.
Another important point is the appropriate mathematical interpretation of the t-norm
operator in equation (2). There are multiple choices available, but it is prévirat
minimum and product inferences are most widely used in engineering applications,
since they preserve the cause and effect relationship - the cornerstone principle of each
modeling process. Relying on that, the inference scheme of the implemented particular
fuzzy model is derived as a fuzzy graph, in which Larsen product operator is used for
fuzzy conjunction and “maximum?” for fuzzy union operator:

9= mzaX(MAi x B; (u7 U)) = m?X(MAi (u) " UB; (U)) (4)

The inference is based on the most commonly used Zadeh max-min compositional
rule.3* If input “x is A" is given, the inferred output is:

pp (y) = HlmZ?X(min(MA' (7i), paxB(Ti, i) )

4. Fuzzy Approach to Tracking Target Behavior

There are a few basic components in the block diagram of the system for target be-
havior tracking, shown on Figure 1. In general, this diagram resembles the approaches
commonly used in standard tracking systems. This section provides additional infor-
mation on the specific implementation of the fuzzy logic approach to realize the main
steps of tracking.

4.1. Fuzzfication I nterface Determination

An important variable in the particular case is the amplitude. Its valil{é$ are trans-
mitted from the emitter and received at consecutive time monientsl, 2, .... The
fuzzification interface presented on Figure 2 ma$) into four fuzzy sets:

O = {VerySmall(VS), Small(S), Big(B), VeryBig(VB)} , which define the correspond-
ing linguistic values related to the linguistic variable ‘Amplitude Strength.” Their
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membership functions are not arbitrarily chosen, but rely on the well-known inverse
proportion dependency between the measured amplitude value and the corresponding
distance to the observed target (Figure 3).

The length of fuzzy sets’ bases provides a design parameter which is calibrated to
achieve satisfactory performance. Membership functions are tuned in conformity with
the particular dependency = f(1/d p) which is a priori information. The degree of
overlap between adjacent fuzzy sets reflects amplitude gradients in the boundary points
of specified distance intervaig,.

4.2. | dentification of | mplemented Fuzzy Models

In conformity with the core of our task, fuzzy rules’ definition is consistent with the
tracking of amplitude changes in consecutive time momeénts 1,2,.... A partic-

ular feature in this regard is that the considered fuzzy rules have one and the same
antecedents and consequents. We define their meaning by using the linguistic terms
and associated membership functions prespecified in paragraph 4.1. We consider two
essential models of possible target behavior:

¢ Approaching Target. Its behavior in time is characterized as a stable process of
gradual increase of the amplitude value that can be described by a set of transitions:
vVS—-VS—-S—-S—-B—+B—-VB—->VB ;

e Receding Target. Its behavior in time is characterized as a stable process of
gradual decrease of the amplitude value, that is described by a set of transitions:
VB—-+B—>B—>S—>S5S->VS—>VS.

To comprise appropriately these models, the following fuzzy rule bases have to be
carried out:
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Behavior 1: APPROACHING TARGET Behavior 2: RECEDING TARGET

Rulel:IF A(k)isVS THEN A(k 4+1)isVS  Rulel:IF A(k)isVBTHEN A(k+ 1)isVB
Rule2IF A(k) isVS THEN A(k + 1) is S Rule2:IF A(k)isVB THEN A(k + 1) isB
Rule3:IF A(k)isS THEN A(k + 1) isS Rule3:IF A(k)is BTHEN A(k + 1) is B
Rule4:IF A(k) isS THEN A(k + 1) is B Rule4:IF A(k)is BTHEN A(k + 1) is S
Rules:IF A(k) is BTHEN A(k + 1) is B Rules:IF A(k)isS THEN A(k + 1) is S
Rules:IF A(k) isBTHEN A(k + 1) isVB Rules:IF A(k)isS THEN A(k + 1) isV'S
Rule?:IF A(k)isVBTHEN A(k 4+ 1)isVB  Rule:IF A(k)isVS THEN A(k 4+ 1) isVS

In conformity with theoretical considerations and mathematical interpretations in para-
graphs 3.4 and 3.5 and by using the specified membership functions, we obtain the
resulting fuzzy graphs as fuzzy relations:

Relationl:Approaching Target Relation2:Receding Target

k—k+1| VS S B VB k—k+1 VS S B VB
VS 1 1 0.15| 0.02 VS 1 0.15| 0.02| 0.0
S 0.15 1 1 0.15 S 1 1 0.15| 0.02
B 0.02] 0.15 1 1 B 0.15 1 1 0.15

VB 0 0.02] 0.15 1 VB 0.02| 0.15 1 1

These fuzzy relations represent the degree of possibility for associations between re-
spective (input, output) pairs. Then, we are able to realize our models’ based filters
running in parallel.

4.3. Models Conditioned Amplitude State Tendency Prediction

At initial momentk the target is characterized by the fuzzified amplitude values ac-
cording to the modelg 44, (k/k) andu 4r..(k/k). Using these fuzzified amplitudes
and applying the described above Zadeh max-min compositional rule equation( 5) to
relation 1 -App(k — k + 1) - and relation 2 -Rec(k — k + 1), we obtain models
conditioned amplitude state tendency for time monie#tl, i.e.:

uAApp(k + l/k) = max(min(uAApp(k/k)ﬂ,uApp(k —k+ 1)))7 (6)

:UAReC(k + l/k) = max(min(,U’AReC(k/k)aMRec(k —k+ 1))) (7)

4.4. Weighting Procedure for Noise Reduction

In order to reduce the influence of measurement noise over the amplitude tendency pre-
diction, a weighting procedure is applied to make the measurement more informative.
This procedure can be considered as an adaptive linear combiner as follows:

e We compute the degree to which the new fuzzified measurement intersects
each of the linguistic terms in the franee= {vs, s, B,vB}. Actually, in that way
we consider the likelihoods of receiving particular observation on condition that it
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originates from each of these terms, i.e.:

Li(A(k+1)/0(i)) = hgt[A(k+1)NO(i)] = sup{min(pa(k+1), o))}, i = 1—(;1)
where the operataligt denotes the height of a resulting fuzzy sets, obtained after
intersection between fuzzified new amplitude value and membership function of each

of the linguistic terms in the fram®;
¢ Using these likelihoods as respective weighting coefficients, we form the convex
combination of the linguistic terms. Thus we take into account the degree of their influ-
ence over the received measurement. A normalization procedure is applied. The new
fuzzy set represents the weighted measurement with a following membership function:
naAw (l‘) = Zz Liv WLCION WhereLﬁ\’ = LZ/EL“ Liv > 0; Ez Liv =1
Example.
At scan 4 the new crisp amplitude measurement is 0.7487.
¢ After applying fuzzification procedure one obtains:
,UVS(A) = 0.0; ,us(A) = 0.0189; HB(A) = 0.7854; HVB(A) = 0.0373.
e Bearing in mind the a priori defined input feature frafhet is possible to
define:L;(A/VS) = hgt[ANVS] = max{min(ua, pys)} =
= max{min(0, 1), min(0.0189, 0.15), min(0.7854, 0), min(0.0373,0)} = 0.0189.
¢ The application of the above procedure according to the other linguistic values
yields: Ly(A/S) = 0.15; L3(A/B) = 0.7854, L4(A/VB) =0.15.
¢ A normalization procedure is applied o;: Lf\’ =L;/XL;, i=1+4. It
yields: LY = 0.0172; LY =0.1358; LY =0.7112; LY =0.1358.
e The weighted measurement is formed as a convex combinatjol: = LY %
pvs+ LY % us+ LY x up + LY x uyp. As aresult, we obtaipy s (A™) = 0.0499;
ns(AW) =0.3259; up(AV) =1.0; puyp(A") = 0.3225.

4.5. Updating State Estimates
The updated states are obtained through a fuzzy set intersection between the weighted
new measurement and corresponding modes conditioned amplitude state predictions:

Panpp(k+1/k+1) =min(paw, paap,(k+ 1/k)), 9)

,UARec(k + 1/k + 1) = min(UAWnuARec(k + l/k)) (10)

5. Simulation Study

A simulation scenario is developed for a simple target trajectory (Figure 4) in plane
coordinateg X,Y") and for constant velocity movement. The target's starting point
and velocities are(X, = 5km,Yy = 10km), X = 100m/s,Y = 100m/s and
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Figure 4: Target trajectory Figure 5: Measurements dynamics

X = —100m/s,Y = —100m/s. The time sampling rate i8 = 5s. The dynamics of
target movement is modeled by simple equations:

zk)y=xzk-1)+2-T; yk)y=ylk—1)+y-T. (11)

The amplitude value 4 (k) = A(k) + va(k) measured by passive radar is a random
Gaussian distributed process (Figure 5) with medh) = 1/D(k) and covariance

oa(k) =0.3-rand(1,1)/D(k). D(k) = ¥/x(k)? + y(k)? is the distance to the target,
{z(k),y(k)} is the corresponding vector of coordinates, andk) is the measurement
noise. Each amplitude value (true one and the corresponding noisy one) received at
time (scan)k = 1,2, ... is processed according to the block diagram of our target's
behavior tracking system (Figure 1).

Figures 6-10 show the results obtained during the whole motion of the observed target
(descending and approaching directions). They represent the tendency in target behav-
ior, which is described via the time (scan) consecutive transitions of amplitude value
VB—+VB—+B—B—=S—8—=VS—Vsandrespectivelys - vs -5 — S —

B — B — VB — VB. Figure 6 represents the case, when the measured amplitude val-
ues are without measurement’s noise, Ze.(k) = A(k). Two models -Approaching
andReceding are maintained in parallel.

With the implementation of the developed algorithm (Figure 1) it becomes possible to
make a correct decision about the plausibility of the considered models. It could be
seen that between scans 1 and 90 target motion estimation is supported by the correct,
for that caseDescending model. In the same time, th&pproaching model has no
reaction to the measurements dynamics, because it does not match the real target be-
haviorReceding. Taking into account Figure 5, the amplitude measurements dynamics
between scans 10 and 90 could be analyzed as relatively weak from the point of view
of the fuzzification interface (Figure 2). Such a transition area is contingent on the
assumed possibility for sojourning time, when the measured amplitude values during
consecutive scans consistently reside in one and the same regions of that interface. It
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Figure 6: Target behavior estimation (without measurement noise)
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Figure 7: Target behavior estimation in Figure 8: Target behavior estimation in
case of noise. case of noise reduction.

is characterized with a latency delay before switching to the opposite behavior mode.
After scan 90 and until scan 115 it is obvious that Bescending model misses the
amplitude changes, while tgproaching model becomes the plausible one. Figure 7
represents the case, when the measured amplitude values are corrupted by noise with
o4 =0.2.rand(1,1)/D(k).

Some disorder and discrepancy between predicted behavior tendency and true ampli-
tude behavior take place, and it is difficult to make a firm decision about the tendency
of target behavior. As presented on Figure 8, the application of the noise reduction pro-
cedure produces a ‘smoothed’ predicted behavior tendency, and it becomes possible to
make a robust decision on the tendency of target behavior. The effect of that procedure
is even more important when input measurements are corrupted by higher noise levels,
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for example witho 4 = 0.4.rand(1,1)/D(k) (Figure 9). In that case, some chaotic
behavior is detected. In such critical situations the noise reduction procedure assures a
more consistent process of amplitude tendency prediction (Figure 10).

6. Conclusions

An approach to estimating the tendency of target behavior was proposed and eval-
uated. It is based on Fuzzy Logic principles applied to conventional passive radar
measurements. A particular real-time algorithm was developed. It was evaluated using
computer simulation. Dealing simultaneously with numerical and linguistic data, an
opportunity for robust reasoning is realized. The application of an additional weighting
procedure for noise reduction improves the overall process of estimating the tendency
of target behavior. The developed algorithm is suitable and adapted for processing
noisy amplitude measurements. It entails modest computational load and provides
simple and robust decisions about tendencies in target behavior. The proposed ap-
proach is suitable for obtaining a tactical picture for complex or ill-defined problems
in engineering applications.
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