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Abstract: Garbled Circuits were first introduced by Yao in 1984 as a generic approach 

to perform secure two-party computation between two semi-honest participants. While 

the result already has a great theoretical significance, it was believed to have very lim-

ited applicability due to performance aspects. In the last ten-fifteen years, though, 

many researchers revived this approach by optimizing one aspect after the other, which 

results in total in several orders of magnitude of speed-up. In this article, we start by 

describing the original garbled circuits construction through a simple example. We 

then review the optimizations of garbled circuits, from point-and-permute to half-

gates, going through garbled row reduction, oblivious transfer extensions, and free 

XOR. Finally, we present several projects that implemented garbled circuits with some 

of these optimizations, starting from fairplay to the more recent approaches of OblivC 

and ObliVM. 
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Introduction 

Assume that two competing companies want to perform analytics on their respective 

databases. If each company computes the analytics on its own database, they get some 

result, but if they perform the analytics on the concatenation of both databases, they 

will get more accurate results (because the sample space will be larger). However, 

they do not want to reveal their respective database to the other party as this is a pre-

cious and private asset. Their goal is, therefore, to be able to perform the analytics on 

the concatenation of their private databases: both companies agree to learn the analyt-

ics result, but they do not want to leak information about their database to the other 

entity. This is a typical application scenario of secure multi-party computation. 

This problem was addressed in the early eighties by Andrew Yao1,2 who proposed 

garbled circuits as a generic secure two-party computation protocol. The high-level 
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idea is that any function represented as a circuit can be garbled by one party and 

evaluated by the other to enable computation on private data without leaking any ad-

ditional information on the data beyond the result of the computation itself. While 

this seminal work was of great theoretical significance, it was regarded as unpractical 

for years. However, in the past fifteen years many researchers worked on the concept 

again and proposed optimizations that improved the efficiency of garbled circuits by 

several orders of magnitude. All these optimizations paved the way to the develop-

ment of libraries that use garbled circuits as a core building block to perform secure 

computation. 

In this article, we start by explaining through an example the fundamentals on garbled 

circuits in section 1. We then present several optimizations that are key to improve 

the performance of garbled circuits in section 2. Finally, we present some of the re-

cent libraries that implement garbled circuits and beyond in section 3.  

1. Garbled circuits 

Garbled circuits are a generic secure two-party computation protocol, which were in-

troduced by Yao1,2 first and then improved in many subsequent works. We adopt a 

description by example to better explain how garbled circuits work. Assume we have 

two players Alice and Bob who choose two bits each and want to check whether some 

of their choices are the same or not. We already observe here that the function that 

the players want to compute is publicly known to both entities but the inputs are pri-

vate. For the sake of simplicity we assume the output of the function should be 1 if 

both inputs are different and 0 if they have at least one common bit. 

1.1. Standard circuits 

The first step is to build a circuit that achieves this functionality. Converting a func-

tion to a circuit is out of scope of this article, but in this simple case, it is easy to 

check that the following circuit achieves the required functionality.  

 



 Abdullatif Shikfa 13 

Figure 1: Sample circuit.  

In this circuit x0 and x1 are the input of Alice, y0 and y1 the input of Bob, G1 and G2 

are two XOR gates, G3 is an AND gate and w1, w2 w3 are the output wires of each 

gate, w3 being the final output of the circuit. In such a classical circuit each wire (in-

cluding the input) is a bit which can take value 0 or 1, and the gate are defined by 

their truth table which are depicted below: 

Table 1: Truth table of the XOR gate (left) and the AND gate (right). 

x y W  x y w 

0 0 0  0 0 0 

0 1 1  0 1 0 

1 0 1  1 0 0 

1 1 0  1 1 1 

 

Evaluation of standard circuits 

To evaluate the circuit, one needs to go from left to right and top to bottom and get 

the output of each gate depending on its inputs through a lookup in the truth table. 

For example if x0=0, x1=0, y0=0, y1=1, then w1=0 (because G1 is an XOR gate with 

input 0 and 0 which corresponds to the first row of the truth table) and w2=1 (because 

G2 is an XOR gate with input 0 and 1 which corresponds to the second row of the 

truth table) and w3=0 (because G3 is an AND gate with input 0 and 1 which corre-

sponds to the second row of the truth table). 

Performance Analysis 

In terms of performance, we observe that each gate is represented by a table which 

can be represented by four bits (assuming the rows always follow the same order). So 
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the communication complexity is simply 4g+n, where g is the number of gates and n 

is the number of input bits. In terms of computation complexity, we have to perform a 

simple lookup per gate. Evaluating a circuit is thus extremely efficient. 

1.2. Construction of garbled circuits 

Now we would like to do the same while hiding the input. The idea of Yao is the fol-

lowing. We assume a general security parameter . In the current state of the art  

would typically be 128 bits, but for the sake of simplicity here, we will make it only 

16 bits for illustration. Remember that we will consider one entity as the garbler (Al-

ice, for example) and the second as the evaluator. 

 

Alice starts by choosing two random numbers of size  for each input and each wire. 

These random numbers will correspond to the garbling of the 0 and 1 values of these 

wires. The important security properties achieved by this step are: 

 The evaluator will learn one of these two values, but he will not be able to 

learn the other one (because the other one is unrelated to the first one contra-

ry to the deterministic values 0 and 1). 

 When the evaluator learns one of the values, he does not know whether this 

value corresponds to 0 or to 1. 

Note that the garbler is choosing these random values both for himself and for the in-

put of the evaluator. An instantiation of this phase is represented in Error! Reference 

source not found., where the top number represents the garbling corresponding to 

the value 0 and the below one the garbling corresponding to the value 1 for each wire 

(these are 4 hexadecimal digits corresponding to 16 bits). 

 

 

 

 

Figure 2: Sample circuit with garblings for the wires. 

 

 

The truth table of the gates should now be represented with the garbled wires instead 

of the 0 and 1 values. For example, the table of G1 would look as in Table 2. 
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Table 2: Truth table of G1 with garbled values. 

 

x0 y0 w1 

A04E 1267 0451 

A04E 98C3 9348 

EF65 1267 9348 

EF65 98C3 0451 

 

 

However, this is just the first step of computing the garbled truth table. Indeed the 

current form still leaks a lot of information and one can easily deduce that this table 

corresponds to XOR or its complement. If one knows on top of that that this is the 

truth table of an XOR (as the circuit itself is not supposed to be secret) then one can 

deduce relations among the garbled wires. Finally, this directly reveals the different 

possible values of the output wires. 

 

To solve these issues, the second step is to hide the values of the input and to encrypt 

the output with the input. Let us denote by Ek and encryption algorithm under key k, 

then each row of the table is encrypted twice with the keys being the garblings of the 

input. This is best seen visually in table 3. 

 

Table 3: Garbled truth table of G1 after step 2. 

 

w1 

EA04E(E1267(0451)) 

EA04E(E98C3(9348)) 

EEF65(E1267(9348)) 

EEF65(E98C3(0451)) 

 

 

Finally to avoid revealing the information about the order of the inputs (and whether 

they correspond to a 0 or a 1), the garbled truth table needs to be randomly shuffled.  

 

An example of final garbled truth tables for the circuit is depicted in Table 4. 
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Table 4: Final garbled truth table of the three gates. 

 

w1  w2  w3 

EA04E(E1267(0451))  EB456(E71F1(B4C2))  E9348(E8462(603E)) 

EEF65(E1267(9348))  E30D5(E71F1(8462))  E9348(EB4C2(CEFA)) 

EEF65(E98C3(0451))  EB456(E9386(8462))  E0451(EB4C2(603E)) 

EA04E(E98C3(9348))  E30D5(E9386(B4C2))  E0451(E8462(603E)) 

 

Note that even though Alice is constructing the whole garbled circuit and know all the 

garblings of all wires, she is not able to evaluate the circuit because she doesn’t know 

the actual values of Bob’s input. 

 

1.3. Transfer of the garbled circuit 

With this, the garbler has finished the computations he needs to perform. What is re-

maining is for him to send the garbled circuit to the evaluator (Bob). More precisely, 

he sends to Bob: 

 The garbled truth tables, as shown in Table 4, 

 His garbled inputs. In our example, Alice’s input were x0=0 and x1=0, 

hence the corresponding garbled inputs that he will send to Bob are 

x0=A04E and x1=B456. 

 

Note that Bob cannot link the garbled inputs of Alice to their clear text counterparts. 

The last step before evaluation is that Bob needs to get his input. The tricky part here 

is that: 

 Bob should only get the garbled version of his input and not the garbled ver-

sion of the complement to his input (otherwise he would be able to compute 

the function on all possible values of his variables). Hence Alice cannot 

simply send to Bob both garbled values of each input of Bob. 

 Alice should not learn the input of Bob as well, hence Bob cannot simply 

ask Alice to send the garbled values corresponding to y0=0 and y1=1 for 

privacy reasons. 

To solve these seemingly contradictory requirements. Alice and Bob enter an oblivi-

ous transfer protocol which satisfies exactly these requirement. In a 1 out of 2 oblivi-

ous transfer protocol the sender (Alice) has two values and the receiver (Bob) gets 

one (and only one) of these inputs without Alice knowing which one he received. 

Oblivious transfer protocols are a topic of their own that we will not discuss in this 

paper, but the interested reader can read the seminal contributions of Rabin3 and Even 

et al.4 or read the survey by Phong.5 
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Hence, through two instances of Oblivious Transfer, Bob gets the garblings to his in-

puts which are y0=1267 and y1=71F1. 

1.4. Evaluation of garbled circuits 

Now Bob has all the required information to evaluate the circuit. He proceeds gate by 

gate. For each gate he has two garblings which allow him to decrypt only one of the 

four rows. To be more precise: 

 He starts with G1, where he has the input are x0=A04E and y0=1267 that 

allow him to decrypt the first row and get the values w1=0451. 

 For G2, he has the garblings x1=B456 and y1=71F1 that enable him to 

decrypt also the first row of the truth table of G2 and resulting in the garbled 

value of w2=B4C2. 

 For G3, the garbled inputs are w1=0451 and w2=B4C2, which enable Bob 

to decrypt the third row of G3 and leads to the garbled value of w3=603E. 

 

This concludes the evaluation of the garbled circuit and Bob returns the garbling 

603E to Alice who is able to translate it as 0. Note that in all the evaluation steps, 

Bob is unable to determine whether he is evaluating a 0 or a 1 but he is still able to 

reach the garbled output of the circuit which he can decode to the clear text output of 

the function with the help of Alice. Hence, Alice and Bob are able to privately com-

pute the function on their inputs. Of course this is an informal argument about the se-

curity of the scheme, for a formal proof please refer to the work of Lindell ad Pinkas.6 

1.5. Performance of garbled circuits 

Contrary to the case of clear text evaluation,  we observe that each gate is represented 

by a table which contains four encrypted values each of size  bits (16 bits in our ex-

ample, but remember that in typical applications nowadays it would rather be 128 

bits). The inputs are of the same size  so the communication complexity is now 

(4g+n)  bits (plus the cost of oblivious transfer, which is not negligible). In terms of 

computation complexity, the evaluator has to try four pairs of decryption operations 

(at most) for each gate hence evaluation is also much slower than in the clear text 

case. 

 

We will now describe the optimizations to reduce both communication and computa-

tion complexity. 

2. Garbled Circuits’ Optimization 

To optimize garbled circuits there are two aspects to take care of: computation and 

communication complexity. First note that the circuit that we took as example only 

included AND and XOR gates. This is was done on purpose as most optimizations 

focus on these two gates. And since the set {XOR, AND} is functionally complete it 

means that any circuit can be written with these two gates alone, hence it is enough to 

focus on these two gates. 
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Point and Permute 

The first optimization was introduced by Beaver, Micali and Rogaway7 in 1990 and is 

called Point and Permute. It mainly focuses on improving the computation complexi-

ty to make the circuit evaluation more efficient. Remember that in the basic Yao gar-

bled circuits the evaluator had to try to decrypt the four rows and only succeed in one.  

The idea of point and permute is to add a flag called selection bit to each garbling. 

For each wire, one of the garblings will have the selection bit set to 0 and the other 

will have the selection bit set to 1. This selection bit is chosen randomly and inde-

pendently of the real value of the wire (it will correspond to the real value with prob-

ability half which gives no information to an attacker).  

An example of instantiation is shown in Error! Reference source not found.. 

 

Figure 3: Garbled circuit with selection bits. 

The truth tables are then ordered according to the selection bit in the classical order 

of rows 00, 01, 10, 11. On top of that the ciphertexts no longer need to be from a 

CPA-secure encryption scheme and can instead be instantiated as CH(A|B) where H 

is a hash function. Hence both encryption and decryption are faster. The truth table 

thus become as shown in Table 5.  

Note that the select bit of the output is XORed with the hash as well, hence it is not 

visible in clear as shown in the table. 

Now the main advantage is that the evaluator knows directly which row he will be 

able to decrypt and he no longer need to try all the four possible rows: he just has to 

decrypt the row corresponding to the selection bit he sees at the end of the input wires 

for the gate. For example for gate 1, Bob has the input x0=A04E|0 and y0=1267|1, 

hence Bob directly goes to the second row of the first truth table and gets as output 

w1=0451|1. And the same goes for the two other gates. 



 Abdullatif Shikfa 19 

Table 5: Truth table with point and permute. 

 

w1  w2  w3 

H(A04E|0|98C3|0)9348|0  H(30D5|0|71F1|0)8462|0  H(9348|0|8462|0)603E|0 

H(A04E|0|1267|1)0451|1  H(30D5(|0|9386|1)B4C2|1  H(9348|0|B4C2|1)CEFA|1 

H(EF65|1|98C3|0)0451|1  H(B456|1|71F1|0)B4C2|1  H(0451|1|B4C2|1)603E|0 

H(EF65|1|1267|1)9348|0  H(B456|1|9386|1)8462|0  H(0451|1|8462|0)603E|0 

 

The advantage of this technique is clear: the computation time is reduced by a factor 

up to four at the cost of just one more bit for each wire. 

Row reduction 

In 1999, Naor, Pinkas and Sumner8 proposed a technique to reduce the communica-

tion complexity by reducing the number of rows required for each gate. The idea is 

the following: instead of choosing all garblings randomly it is possibly to chose one 

of the garblings of the output such that its encryption is 0. For example 1999: tech-

nique to reduce the number of rows per AND gate from 4 to 3. For example assume 

that we choose the first row of each table to be 0. This means that we will replace the 

value 9348|0 of w1 by H(A04E|0|98C3|0). In that case the first row of G1 will be 

H(A04E|0|98C3|0) H(A04E|0|98C3|0)=0.  

The other value can still be chosen randomly so we will keep it as 0451|b where b is 

the complement of the last bit of H(A04E|0|98C3|0). Similarly 8462|0 will be re-

placed by H(30D5|0|71F1|0) and 603E|0 will be replaced by H(H(A04E|0|98C3|0)| 

H(30D5|0|71F1|0)).  

An example of the full truth table of G1 is shown in Table 6. Hence all the first rows 

are now 0 and there is no need to send this row. In other words, each garbled table 

now contains only three rows, which reduces the communication complexity by a fac-

tor of 25%. 

This technique was enhanced by Pinkas et al.9 in 2009 to reduce further the number 

of rows to 2. However, this further improvement is not compatible with the free XOR 

technique (presented in the next section) and is of limited use for this reason. We 

will, therefore, not cover it in this article. 

 

 



 Garbled Circuits: Optimizations and Implementations 20 

Table 6: Garbled truth table of G1 with garbled row reduction 

 

w1 

0 

H(A04E|0|1267|1)0451|b 

H(EF65|1|98C3|0)0451|b 

H(EF65|1|1267|1) H(A04E|0|98C3|0) 

Free XOR 

Kolesnikov and Schneider 10 proposed in 2008 a technique that makes evaluation of 

XOR gates for free almost. They proved that Yao’s garbled circuit technique remains 

secure if one imposes a fixed difference between the garblings of the 0 and 1 of all 

wires. Concretely it means that we can choose at random one of the garbling of each 

wire (say the one corresponding to zero) and we also choose at random a fixed differ-

ence d. Then the garbling of the 1 will be computed as the garbling of the 0 XOR the 

fixed difference d. The advantage now is that we can fix the garbling of the output of 

an XOR gate as the XOR of the inputs. 

Let us take as an example the gate G1. We keep the garblings of the 0 values of the 

two input as they are, namely A04E|0 and 1267|1. We choose at random a common 

difference say 258B|1 (it will be the same for the whole circuit). Then the garblings of 

the 1 value of the input will be respectively A04E|0258B|1=85C5|1 and 

1267|1258B|1=37EC|0. For the output wire, the garbling of the 0 will exactly be the 

XOR of the garblings of the 0 of the input, namely A04E|01267|1=B229|1, and the 

garbling of the 1 will be the previous XOR the common difference namely 

B229|1258B|1=97A2|0. Now it is easy to verify that with this set of input and out-

put, the output is always directly the XOR of the input (we constructed it this ways 

for the 0 values, but it works for all values). This simply means that by adopting this 

construction one does not need to send a garbled truth table for XOR gates, and that 

evaluation of an XOR gate consists simply of XORing the value of the input; hence it 

is essentially free (compared to the need to decrypt in the case of other gates). On top 

of that, this technique is compatible with the first garbled row reduction technique 

presented in the previous section. In summary, we have now: 

 free XOR gates, 

 AND gates have only three rows. 

This means that to optimize the evaluation time of garbled circuits, it is interesting to 

reduce the number of AND gates as much as possible even at the cost of increasing 
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the number of XOR gates. In Figure 4, we show how the circuit with the garblings in-

cluding all the previously mentioned improvements. In this figure, we draw in red the 

garblings that are computed to satisfy the free XOR requirement, and in green the 

garbling that is computed to satisfy the garbled row requirement. 

 

For this circuit, the only truth table that needs to be sent by Alice to Bob is the one 

corresponding to gate 3 and it is represented in Table 7. 

Table 7: Garbled truth table of G3 with garbled row reduction and free XOR. 

 

w3 

0 

H(97A2|0|025B|1)H(97A2|0|27D0|0)258B|1 

H(B229|1|27D0|0)H(97A2|0|27D0|0) 

H(B229|1|025B|1)H(97A2|0|27D0|0) 

Half Gates 

With the previous improvements, we already have free XOR; hence we cannot im-

prove XOR gates further. Concerning the AND gate, we mentioned that Pinkas et al. 

proposed a technique to reduce the number of rows to two, but it is not compatible 

with the free XOR technique. 

Recently, in 2015 to be more precise Zahur, Rosulek and Evans 11 managed to come 

up with a technique that makes free XOR compatible with only two rows per AND 

gate. Their technique, however, involves the introduction of specific gates that have 

to be evaluated in a non-standard way. 

Figure 1: Garbled circuit with free XOR and garbled row reduction. 
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The idea is to divide each AND gate in two half gates: one generator half gate and 

one evaluator half gate. To illustrate this in our example, we focus on G3 only as this 

is the only AND gate we have. Zahur et al. made the following observation: 

w3= w1 ∧ w2 = w1 ∧ (rrw2) = (w1 ∧ r)  (w1 ∧ (rw2)) 

where r is the select bit of the false value of w2 (0 in our case). This means that the 

AND gate G3 can be converted to three gates: 

 An AND gate between w1 and r, and r is known to Alice (the garbler), called 

a generator half gate 

 An AND gate between w1 and rw2, and rw2 is known to Bob (the 

evaluator) at evaluation time, because it corresponds to the select bit of the 

wire w2. This gate is called an evaluator half gate. 

 An XOR gate between the previous two, which is implemented using the 

free XOR technique. 

The key idea is that each half gate can be encoded with one encryption only, hence 

performing this transformation is efficient, and will result in total in only two encryp-

tions (two rows) per AND gate. 

Generator half gate 

For the generator half gate, the garbler knows the value of r. If the value of r is 0, the 

garbler just needs to encode a unary gate that always outputs 0, if the value of r is 1 

then the garbler needs to encode a unary gate that corresponds to the identity. Since 

the value of r is known, it will not be added in the hash and the generator will produce 

the two ciphertexts: H(w1)C and H(w1d)Crd where w1 is the value of the 

garbling of 0 of the wire w1 (B229|1 in our example), d is the common difference 

(258B|1 in our example) and the value of C is a garbling that will be explained in few 

lines. These two ciphertexts are ordered corresponding to the select bit of w1 (which 

is 1 in our example, hence we reverse the order of these two ciphertext). The evalua-

tor can simply evaluate this gate by taking the hash of the garbling of w1 (which is w1 

or w1d) and he will get C if r=0, and C or Cd when r=1. We are still free to 

choose C, hence we will set C appropriately to make the first row always 0 (similar to 

the garbled row reduction technique) by setting C equal to H(w1), H(w1d) or 

H(w1d)d depending on the select bits and the value of r. In our example, r=0 and 

the select bit of w1 is 1 hence we will choose C=H(w1d)=H(97A2|0). At evaluation 

time, the evaluator will get the value of w1 and he will get as output H(97A2|0). 

Evaluator half gate 

For the evaluator half gate, the evaluator knows the values of rw2 at evaluation time 

as it corresponds to the select bit of w2. If rw2=0, Bob should always obtain the 



 Abdullatif Shikfa 23 

value C corresponding to false (it will be set later as in the previous case). If rw2=0, 

Bob should get C or Cd depending on the value of w1. But it is enough for him to 

get =Cw1 and then compute w1 to obtain the correct value of the output. The 

generator will compute the two ciphertexts H(rw2)C and H(rw2d)Cw1. 

To further reduce one row we choose C= H(rw2) to zero the first ciphertext. In our 

example, r=0, then C=H(27D0|0) and the ciphertext is therefore H(025B|1) 

H(27D0|0)B229|1. At evaluation time, 

 if Bob gets the value 27D0|0 for w2, he will compute the output of this gate 

as H(27D0|0) 

 otherwise he will get the value 025B|1 for w2, he will hash it and XOR is 

with the ciphertext to obtain =H(27D0|0)B229|1 that he will further XOR 

with the value that he got for w1 to obtain either H(27D0|0) or 

H(27D0|0)258B|1. 

Finally the evaluator has to perform the XOR of the two previous gate and he will get 

either H(97A2|0) H(27D0|0) or H(97A2|0) H(27D0|0)258B|1. 

In summary, this technique allows to reduce the number of rows of AND gates by re-

placing each AND gate by two specific half gates, each of them requiring one row on-

ly to be evaluated, and one XOR gate, which is essentially free. Furthermore, Zahur et 

al. proved that this is optimal under a set of reasonable assumption. 

3. Implementations 
 

As we have seen, garbled circuits have seen tremendous theoretical improvements, 

both on the communication and computation complexity. We will now see how these 

theoretical improvements have also been implemented in programming frameworks 

to allow developers to perform secure multi-party computation without deep 

knowledge of garbled circuits. We describe some of the main tools that are open 

source and publicly downloadable. 

Fairplay (2004) 

The Fairplay project by Malkhi et al.12 is one of the first practical implementations of 

garbled circuit. It is a java-based implementation of garbled circuits featuring the 

point-and-permute improvement. The main interest of Fairplay is that it can convert a 

high level program similar to java to a circuit. The circuit can be a generic one or a 

circuit with only binary gates. It can also be used by two parties or more. In terms of 

performance, the implementation does not use much optimizations and is thus not 

very fast, garbling less than 30 gates per seconds. 
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FastGC (2011) 

Huang et al.13 proposed FstGC in 2011 as a major improvement over Fairplay. Not 

only does FastGC implement the known extensions at that time such as free XOR, 

garbled row reduction and Oblivious Transfer Extensions, but it also solves an im-

portant problem of memory exhaustion. Indeed, approaches such as Fairplay were 

generating the whole garbled circuit first and then evaluating it. As a result, only 

small circuits could be evaluated. FastGC on the contrary has a pipelined generation 

and evaluation of the circuit which improves efficiency but also scalability. In terms 

of programming framework, FastGC allows users to write their programs using a 

combination of high-level and circuit level Java code. This enables the programmers 

to perform circuit level optimization but requires them to have good understanding of 

Boolean circuits. As a result, FastGC can garble around a hundred thousand gates per 

seconds, and can perform a garbled AES encryption is 0.2s.  

TinyGarble (2015) 

Songhori et al.14 proposed TinyGarble, a tool that generates optimized and com-

pressed Boolean circuits. TinyGarble views circuit generation as a logic synthesis 

task. Hence TinyGarble focuses primarily on the circuit component of Garbled Cir-

cuits. Hence it naturally accepts inputs as a standard hardware description language. 

It also accepts higher level language programs as input as long as they are compatible 

with existing high-level synthesis tools. TinyGarble is the most efficient for the cir-

cuit generation part but is more difficult to use by a developer, as the output of Ti-

nyGarble is a netlist (or list of gates) which is further transformed to be used with a 

full Garbled Circuit implementation. On top of producing circuits with the most effi-

cient memory footprint to date, TinyGarble also performs just in-time garbling and 

can, therefore, securely evaluate the most practical function with a classical proces-

sor. 

OblivC (2015) 

Zahur and Evans 
15 developed Obliv-C, which is an extension of the C language 

which supports the standard C features as well as extensions for data-oblivious pro-

grams. A typical Obliv-C program consists of three files: a header (.h) file, a classical 

.c file that takes care of the setup, networking aspects, and so on, and a specific 0oc 

file to take care of the private parts of the program. The programmer can therefore 

easily develop an application by adding the keyword obliv to the variables that should 

remain private and the compiler will take care of implementing garbled circuits and 

other techniques such as oblivious RAM to produce a securely evaluate the function. 

For the garbled circuits part, Obliv-C includes all the classical optimizations (free 

XOR, half gates, OT extensions), and complements them with Oblivious Ram and 
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range-tracked integers. Notably, Obliv-C is the only tool in our list which is an exten-

sion of C. 

ObliVM (2015) 

OblivM, developed by Liu et al.,16 is a complete framework for secure multiparty 

computation. It is easy to use, based on Java code and supports garbled circuits as 

back-end (with the project to support additional protocols such as fully homomorphic 

encryption). This back-end part called ObliVM-GC also includes all the aforemen-

tioned optimizations and basically builds on FastGC, improving its performance by a 

factor seven (garbling roughly 700 thousand gates per second). On top of this back-

end part, ObliVM includes a compiler that converts the high-level java program to 

one or several circuits whose inputs are oblivious memory accesses. ObliVM indeed 

also adopts on-the-fly circuit generation. ObliVM includes several application exam-

ples with benchmarking that shows that slowdown between cleartext computation and 

secure computation is between one thousand and one million depending on the appli-

cations.  

Conclusion 

In summary, we presented Yao garbled circuits and the optimization that improve its 

performance. With these optimizations, the computation cost goes down from four 

pairs of decryption per gate to one decryption only. XOR gates are free to evaluate 

(actually at the cost of a traditional XOR only), and AND gates can be reduced to on-

ly two ciphertexts instead of four, their evaluation requiring two hash functions com-

putation and three XORs. We also presented several implementations of garbled cir-

cuits and of complete secure computation frameworks that use garbled circuits as a 

backend. The performance of these latest implementations are still lacking compared 

to cleartext evaluation but they are several order of magnitudes more efficient than in-

itial implementation. The last three tools that we presented are very recent showing 

that this area is a hot topic in the security community, both on the theoretical and im-

plementation side. For instance, on the theoretical side, Wang and Malluhi17 showed 

how to reduce the number of ciphertexts per AND gate even further by relaxing the 

assumptions of Zahur et al.11 

Furthermore, note that we only presented garbled circuit as a two party protocol but it 

can also be instantiated in many different ways. For example, if only one party has 

secret input, garbled circuits can be used for secure delegation of computation18. It is 

also possible to implement garbled circuits with a semi-honest third party that per-

forms the garbling19. That enables for example, to verify the consistency of secret in-

put across several executions20. 
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