Land Combat Scenario Planning: A Multiobjective Approach
Publication Type:
Book ChapterSource:
Simulated Evolution and Learning, Springer Berlin Heidelberg, Number 4247 (2006)ISBN:
978-3-540-47332-9Abstract:
<div class="col-main has-full-enumeration" id="kb-nav--main" style="border: 0px; font-family: 'Helvetica Neue', Arial, Helvetica, sans-serif; font-size: 13px; font-style: normal; font-variant: normal; font-weight: normal; line-height: 13px; margin: 0px 0px 0px 40px; padding: 0px; vertical-align: baseline; outline: 0px; display: inline; width: 580px; float: left; position: relative; color: rgb(51, 51, 51); letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255);"><div class="abstract-content formatted" style="border: 0px; font-family: inherit; font-size: inherit; font-style: inherit; font-variant: inherit; font-weight: inherit; line-height: inherit; margin: 0px; padding: 0px; vertical-align: baseline; outline: 0px; display: block;"><p>The simulation of land combat operations is a complex task. The space of possibilities is exponential and the performance criteria are usually in conflict; thus finding a sweet spot in this complex search space is a hard task. This paper focuses on the effect of population size and mutation rate on the performance of NSGA–II, as the evolutionary multiobjective optimization technique, to decide on the composition of forces using a complex land combat multi-agent scenario planning tool.</p></div></div><div class="col-aside" id="kb-nav--aside" style="border: 0px; font-family: 'Helvetica Neue', Arial, Helvetica, sans-serif; font-size: 13px; font-style: normal; font-variant: normal; font-weight: normal; line-height: 13px; margin: 0px 0px 0px 40px; padding: 0px; vertical-align: baseline; outline: 0px; display: inline; width: 240px; float: left; color: rgb(51, 51, 51); letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255);"><div class="cover" style="border: 0px; font-family: inherit; font-size: inherit; font-style: inherit; font-variant: inherit; font-weight: inherit; line-height: inherit; margin: 0px; padding: 0px; vertical-align: baseline; outline: 0px; display: block;"><div class="look-inside cover-image-animate" style="border: 0px; font-family: inherit; font-size: inherit; font-style: inherit; font-variant: inherit; font-weight: inherit; line-height: inherit; margin: 0px; padding: 0px; vertical-align: baseline; outline: 0px; display: block; min-height: 188px; position: relative; max-width: 170px; text-decoration: none;"> </div></div></div>
- 6532 reads
- Google Scholar
- DOI
- RTF
- EndNote XML